If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2X^2+5X+12=0
a = -2; b = 5; c = +12;
Δ = b2-4ac
Δ = 52-4·(-2)·12
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-11}{2*-2}=\frac{-16}{-4} =+4 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+11}{2*-2}=\frac{6}{-4} =-1+1/2 $
| -2/1=5-c/4 | | -34=15x+18+11x | | 23w2+9w=0 | | 980x^2-20x-800=0 | | 9n+7n-2=50 | | 5/3x+1/3x=71/3=8/3x | | 63+83+7c+27=180 | | 4.9t^2+20t+12=0 | | 28=f−30 | | -4(x+3)=-2x+2 | | 3x+26x+4=x-2/3 | | 19h-9h=10 | | -3x+14=-1+7 | | 3w+3+98+w+27=180 | | 12h-8h-2h+3=11 | | x4+7=-36 | | v+15=20 | | 0.6+x=0.3(x-5) | | 1.5+0.3y=3.6 | | 9-4x=7x-101 | | 11t2+14t=0 | | x2+3x+48=0 | | 3x-3x+2x=6 | | v3=1.5 | | -3n-7-2n=-27 | | A(n)=12+(n-1)(-3) | | 12x^2-18=15x | | 9-5x^2=-3x | | 4k-2k=-10 | | x2+3x+48 =0 | | 9/4y−12=4/1y−4 | | -20=7g-6 |