-2n-3(5n-7)=-3n(n-6)-2

Simple and best practice solution for -2n-3(5n-7)=-3n(n-6)-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2n-3(5n-7)=-3n(n-6)-2 equation:



-2n-3(5n-7)=-3n(n-6)-2
We move all terms to the left:
-2n-3(5n-7)-(-3n(n-6)-2)=0
We multiply parentheses
-2n-15n-(-3n(n-6)-2)+21=0
We calculate terms in parentheses: -(-3n(n-6)-2), so:
-3n(n-6)-2
We multiply parentheses
-3n^2+18n-2
Back to the equation:
-(-3n^2+18n-2)
We add all the numbers together, and all the variables
-(-3n^2+18n-2)-17n+21=0
We get rid of parentheses
3n^2-18n-17n+2+21=0
We add all the numbers together, and all the variables
3n^2-35n+23=0
a = 3; b = -35; c = +23;
Δ = b2-4ac
Δ = -352-4·3·23
Δ = 949
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-\sqrt{949}}{2*3}=\frac{35-\sqrt{949}}{6} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+\sqrt{949}}{2*3}=\frac{35+\sqrt{949}}{6} $

See similar equations:

| -8+5n=27 | | 160+v=28 | | 3x+7=3(x−1) | | 6(k-75)=60 | | 5+3x−37=6x+23−8x | | 15=4(x+2)-1 | | -7c+3=-4c-2 | | 13h-5h+-15h=7 | | 42=6q-24 | | 8=1/2d+12 | | -0.2a=1.6 | | 3x+2x(-3)=6 | | 710+c=1500 | | x/3x–5=4x+8 | | −7n=35 | | 4k+1/3=-7 | | 7(-7x+1)=399 | | m/5+7=12 | | |10x+2|+6=58 | | 710+c=1,500 | | 37(4x+7)(6x-5)=180 | | 37x(4x+7)x6x-5=180 | | m-32=5+3 | | 5p-17=2(2p-) | | 61+67+4b=180 | | 4x-7+x=-3x+9 | | c/9-4=1 | | 3(0)+y=250 | | 1.8=-3b | | 3x–5=4x+8 | | 43+(5x+2)=90 | | 4/5x=92 |

Equations solver categories