If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2n^2+32n+110=0
a = -2; b = 32; c = +110;
Δ = b2-4ac
Δ = 322-4·(-2)·110
Δ = 1904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1904}=\sqrt{16*119}=\sqrt{16}*\sqrt{119}=4\sqrt{119}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{119}}{2*-2}=\frac{-32-4\sqrt{119}}{-4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{119}}{2*-2}=\frac{-32+4\sqrt{119}}{-4} $
| 7/8x9=9 | | 7=y÷3 | | 8(3g=2)-3g=3(5g-4)-2 | | 3+5*p=41 | | 2x=x+25/x | | -9(x-5)=-3x+27 | | 3b*5=41 | | 5-8(6+5k)=277 | | 2/3(9e+6)=15 | | -3y+6(y-2)=-24 | | |5m-11|-3m=9 | | (7+y)(5y-4)=0 | | 9x-1=-x+19 | | c/8+40=42 | | 4(2c+5)=22 | | 4x+50+8x+6=180 | | -2=6(w+2)-4w | | y/9=8.1 | | n/5-37=-32 | | w+7w=18 | | -1=3(x-7)-7x | | 8b=2b+18 | | -13=-8u+3(u-6) | | A=h/2(30) | | -3(w=4)=4w-5 | | (5y-2)=40 | | 235=4+7(5n+8) | | 2y-42=-3(y-1) | | -663=6n+9(-9n-7) | | x^2(x+10)-50=325 | | 10x+8=9x+15 | | 3b^2+9b-12=0 |