-2q-3=-2(2q+1)(3q)

Simple and best practice solution for -2q-3=-2(2q+1)(3q) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2q-3=-2(2q+1)(3q) equation:



-2q-3=-2(2q+1)(3q)
We move all terms to the left:
-2q-3-(-2(2q+1)(3q))=0
We calculate terms in parentheses: -(-2(2q+1)3q), so:
-2(2q+1)3q
We multiply parentheses
-12q^2-6q
Back to the equation:
-(-12q^2-6q)
We get rid of parentheses
12q^2+6q-2q-3=0
We add all the numbers together, and all the variables
12q^2+4q-3=0
a = 12; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·12·(-3)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{10}}{2*12}=\frac{-4-4\sqrt{10}}{24} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{10}}{2*12}=\frac{-4+4\sqrt{10}}{24} $

See similar equations:

| 5b=9+5b | | 2(x+2)-5=3(x+) | | 10.25+2x=20.05 | | -6k+8=-2(3-4k) | | 2(2x+2)-5=3(x+1 | | 5x+(-1)(x)-(-1)(11)=8 | | Y=b²+3 | | ​(x)=18x+14​ | | -8x-16=2(-8-4x) | | Y=b²+3;b=4 | | x+8+x+12=94 | | 8b-33=8(b-4) | | 18+45=7y | | 50-23=9x | | 24+6=3x | | 4-4y-5y2=0 | | 100-5=5x | | 6x+16=124 | | -27+4x=-4(x-5) | | 8a+96=−24 | | x-6=22+15x | | 4+7v=7v+8 | | 2/7*x=14 | | 2m-2=-18 | | 8y-3y=65 | | 9y+2y=121 | | -1+3n=7n+3-4n | | -5x+2x(x-30)=x | | 1/2(10-4x)=x/2 | | 6x+5=5x+3=9 | | 3n-9=2n-15 | | -9p=-54 |

Equations solver categories