-2s(3s+1)(s+2)+5s=

Simple and best practice solution for -2s(3s+1)(s+2)+5s= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2s(3s+1)(s+2)+5s= equation:


Simplifying
-2s(3s + 1)(s + 2) + 5s = 0

Reorder the terms:
-2s(1 + 3s)(s + 2) + 5s = 0

Reorder the terms:
-2s(1 + 3s)(2 + s) + 5s = 0

Multiply (1 + 3s) * (2 + s)
-2s(1(2 + s) + 3s * (2 + s)) + 5s = 0
-2s((2 * 1 + s * 1) + 3s * (2 + s)) + 5s = 0
-2s((2 + 1s) + 3s * (2 + s)) + 5s = 0
-2s(2 + 1s + (2 * 3s + s * 3s)) + 5s = 0
-2s(2 + 1s + (6s + 3s2)) + 5s = 0

Combine like terms: 1s + 6s = 7s
-2s(2 + 7s + 3s2) + 5s = 0
(2 * -2s + 7s * -2s + 3s2 * -2s) + 5s = 0
(-4s + -14s2 + -6s3) + 5s = 0

Reorder the terms:
-4s + 5s + -14s2 + -6s3 = 0

Combine like terms: -4s + 5s = 1s
1s + -14s2 + -6s3 = 0

Solving
1s + -14s2 + -6s3 = 0

Solving for variable 's'.

Factor out the Greatest Common Factor (GCF), 's'.
s(1 + -14s + -6s2) = 0

Subproblem 1

Set the factor 's' equal to zero and attempt to solve: Simplifying s = 0 Solving s = 0 Move all terms containing s to the left, all other terms to the right. Simplifying s = 0

Subproblem 2

Set the factor '(1 + -14s + -6s2)' equal to zero and attempt to solve: Simplifying 1 + -14s + -6s2 = 0 Solving 1 + -14s + -6s2 = 0 Begin completing the square. Divide all terms by -6 the coefficient of the squared term: Divide each side by '-6'. -0.1666666667 + 2.333333333s + s2 = 0 Move the constant term to the right: Add '0.1666666667' to each side of the equation. -0.1666666667 + 2.333333333s + 0.1666666667 + s2 = 0 + 0.1666666667 Reorder the terms: -0.1666666667 + 0.1666666667 + 2.333333333s + s2 = 0 + 0.1666666667 Combine like terms: -0.1666666667 + 0.1666666667 = 0.0000000000 0.0000000000 + 2.333333333s + s2 = 0 + 0.1666666667 2.333333333s + s2 = 0 + 0.1666666667 Combine like terms: 0 + 0.1666666667 = 0.1666666667 2.333333333s + s2 = 0.1666666667 The s term is 2.333333333s. Take half its coefficient (1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. 2.333333333s + 1.361111112 + s2 = 0.1666666667 + 1.361111112 Reorder the terms: 1.361111112 + 2.333333333s + s2 = 0.1666666667 + 1.361111112 Combine like terms: 0.1666666667 + 1.361111112 = 1.5277777787 1.361111112 + 2.333333333s + s2 = 1.5277777787 Factor a perfect square on the left side: (s + 1.166666667)(s + 1.166666667) = 1.5277777787 Calculate the square root of the right side: 1.236033082 Break this problem into two subproblems by setting (s + 1.166666667) equal to 1.236033082 and -1.236033082.

Subproblem 1

s + 1.166666667 = 1.236033082 Simplifying s + 1.166666667 = 1.236033082 Reorder the terms: 1.166666667 + s = 1.236033082 Solving 1.166666667 + s = 1.236033082 Solving for variable 's'. Move all terms containing s to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + s = 1.236033082 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + s = 1.236033082 + -1.166666667 s = 1.236033082 + -1.166666667 Combine like terms: 1.236033082 + -1.166666667 = 0.069366415 s = 0.069366415 Simplifying s = 0.069366415

Subproblem 2

s + 1.166666667 = -1.236033082 Simplifying s + 1.166666667 = -1.236033082 Reorder the terms: 1.166666667 + s = -1.236033082 Solving 1.166666667 + s = -1.236033082 Solving for variable 's'. Move all terms containing s to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + s = -1.236033082 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + s = -1.236033082 + -1.166666667 s = -1.236033082 + -1.166666667 Combine like terms: -1.236033082 + -1.166666667 = -2.402699749 s = -2.402699749 Simplifying s = -2.402699749

Solution

The solution to the problem is based on the solutions from the subproblems. s = {0.069366415, -2.402699749}

Solution

s = {0, 0.069366415, -2.402699749}

See similar equations:

| 39-3x=2x+4 | | 2x=-2/3 | | 10+R=8 | | 690(.03)(2)= | | 3a+5a+11=3 | | 4K-K=4K-3 | | -2x-9=11-2 | | -84=58+x | | 12-3(x+5)=-9 | | 3(w-3)=9w+1-2(-3w-3) | | -5/3x+10 | | (4a+2)(3a-1)-(2a-4)(a+5)= | | K-1=-4 | | 2=-6/(x-10)+8/(x-10)^2 | | x^2-2x=x^2-2x+3x-3x | | 5/9x=25 | | 5x-3b=3(x-6) | | 1-3/8x=-2 | | -64=-4(3R+4) | | -15t^2-2t+1=0 | | 2x-5x+6=24 | | 12x-5x+165=12x+100 | | 7a-(b+a+b)-(3a-b+6a)+b= | | -52=-4(4-3B) | | 6000(.05)(1)= | | b/5+12=4 | | 33x-2=31x+6 | | -52=-4(4-36B) | | 4(53-x)=28(x+3) | | 7z-8-4z+32=0 | | 2+8x=7x+8 | | -52=-4(4-36) |

Equations solver categories