If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2t^2-9t-9=0
a = -2; b = -9; c = -9;
Δ = b2-4ac
Δ = -92-4·(-2)·(-9)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3}{2*-2}=\frac{6}{-4} =-1+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3}{2*-2}=\frac{12}{-4} =-3 $
| 3+4x=9x-5x | | -35=-2+3(3p-2) | | 3(3y-5)=42 | | 16=h | | 8(v+3)=6v+18 | | 9x-11+5x+3+90=180 | | -3n+3(1-3n)=-33 | | 9(b+7)=77 | | -4.12=1+v/2 | | 3x=7.50-1.50 | | 8x+2.5x=114=x | | 37=1+3(3-3r) | | -9.4=w/4+3.4 | | -6y-40=-4(y+9) | | 4=-3x+37.X= | | -6(4v+3)=150 | | 4(w-3)=+1+4w-11 | | 15.3+x=-4.9 | | 40x^2-84x+45=0 | | 2(3y-7=22 | | -7(1+2n)-3n=95 | | 3(u-9)=8u-47 | | 8(0)+7(y)=56 | | 93=5(-3-3x)-3x | | 9x-11+5x+3x+x=180 | | 18.4x+2=50+12.4x | | 3x=7.50+1.50 | | -2.3+7x=15.2 | | .7x=62.75 | | (3x+42)=(9x+42) | | m=80= | | -399=-7(1-7m) |