-2x(-2x-7)=-2(x+1)

Simple and best practice solution for -2x(-2x-7)=-2(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x(-2x-7)=-2(x+1) equation:



-2x(-2x-7)=-2(x+1)
We move all terms to the left:
-2x(-2x-7)-(-2(x+1))=0
We multiply parentheses
4x^2+14x-(-2(x+1))=0
We calculate terms in parentheses: -(-2(x+1)), so:
-2(x+1)
We multiply parentheses
-2x-2
Back to the equation:
-(-2x-2)
We get rid of parentheses
4x^2+14x+2x+2=0
We add all the numbers together, and all the variables
4x^2+16x+2=0
a = 4; b = 16; c = +2;
Δ = b2-4ac
Δ = 162-4·4·2
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{14}}{2*4}=\frac{-16-4\sqrt{14}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{14}}{2*4}=\frac{-16+4\sqrt{14}}{8} $

See similar equations:

| 5s-3=3s+6 | | -2(7+4x)=50 | | 3h=4(h-4) | | 60-35x-15=12-3x | | 7(-3x+3)=63 | | 2-2x=-19 | | W+w+18=224 | | 9=-5a=7 | | 6x+9x=1600 | | 3m-13=-16 | | -4n+3=14 | | 5x+9=-3x+41 | | -2+3x=-(x+6)= | | a−2=34 | | 2/3p-3=p/6 | | -4n3=13 | | -24=2x-8 | | 5x-10+8x+34=180 | | j/4+10=14 | | y=(4y-8) | | n=3n+2(1-4n) | | -2(3x+1)=6x+1 | | 3(3x+2)=9x+9 | | 5/12x+3=4/9x+1/3 | | 17.1+x/6=-2.1 | | (u+5)^2+4=44 | | y-5.72=1.9 | | -36-14x=-11x+15 | | 21-y=237 | | -36+7x=10x+54 | | -7(2x-9)+7x=35 | | 8+4u=-16 |

Equations solver categories