-2x(10+5x)+10=2x-118

Simple and best practice solution for -2x(10+5x)+10=2x-118 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x(10+5x)+10=2x-118 equation:



-2x(10+5x)+10=2x-118
We move all terms to the left:
-2x(10+5x)+10-(2x-118)=0
We add all the numbers together, and all the variables
-2x(5x+10)-(2x-118)+10=0
We multiply parentheses
-10x^2-20x-(2x-118)+10=0
We get rid of parentheses
-10x^2-20x-2x+118+10=0
We add all the numbers together, and all the variables
-10x^2-22x+128=0
a = -10; b = -22; c = +128;
Δ = b2-4ac
Δ = -222-4·(-10)·128
Δ = 5604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5604}=\sqrt{4*1401}=\sqrt{4}*\sqrt{1401}=2\sqrt{1401}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{1401}}{2*-10}=\frac{22-2\sqrt{1401}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{1401}}{2*-10}=\frac{22+2\sqrt{1401}}{-20} $

See similar equations:

| 6.5=7.9-0.2x | | 5(8x+7)=275 | | 4x+2x-5=8(0.25x-1) | | -19=28+k/16 | | 9x+3x-4=4(3x-1) | | 6x-4=2(-3x+2) | | 1/2(2g-3)=4(g+1) | | 5(8x+7)=192 | | 5x+x+40+x^2-20=180 | | 2(x+1)=-3(x+7)=2 | | 7p+3=6p+5 | | 4x-3-5-8=360 | | 4(7+2x)-4=6x-5+2x-7 | | 6x=3x+10+x+40 | | 14/350=p | | 4(3x-4=2(5x+2) | | 375=25x+1 | | 3/4g=16/15 | | 3b-(-2)=4b-12 | | 9p+4(2+p=-18 | | 1/3x+1/4=5/6-1 | | 3=18-1.25x | | -8v+32=8(v-8) | | a²–a–132=0 | | 6+x=12+2× | | -6y^2+10y+0=0 | | 10-5x+6x=12 | | 12/0.5=39/x | | 8(7x+7)=448 | | 10x+4.2=2(5x+1.3)+1.6 | | -2x+1+-5x=8 | | 169-(10x-5)=9(4x-4) |

Equations solver categories