-2x(x-12)-5(x+2)=-9x+4x

Simple and best practice solution for -2x(x-12)-5(x+2)=-9x+4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x(x-12)-5(x+2)=-9x+4x equation:



-2x(x-12)-5(x+2)=-9x+4x
We move all terms to the left:
-2x(x-12)-5(x+2)-(-9x+4x)=0
We add all the numbers together, and all the variables
-2x(x-12)-5(x+2)-(-5x)=0
We multiply parentheses
-2x^2+24x-5x-(-5x)-10=0
We get rid of parentheses
-2x^2+24x-5x+5x-10=0
We add all the numbers together, and all the variables
-2x^2+24x-10=0
a = -2; b = 24; c = -10;
Δ = b2-4ac
Δ = 242-4·(-2)·(-10)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{31}}{2*-2}=\frac{-24-4\sqrt{31}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{31}}{2*-2}=\frac{-24+4\sqrt{31}}{-4} $

See similar equations:

| 3(x+2)=-5-2(x-6) | | 1/2(g+18)=3 | | 16x^2-56x-96=4x^2 | | 5n+15=-85 | | 5n+15=(-85 | | 5=v4 | | 3^x+3^(x+1)=756 | | -1.4=v/3+6.1 | | k-8=11.8k−8=11.8 | | 2x-21=-29 | | 4x+34=9 | | 10c+1+42.5(2)=180 | | 23=12(6-x) | | (x+3)^2+(10)^2=(26)^2 | | 5x+35=200 | | X-y=-50 | | 0=-18r+18r | | 6x-27=13x+3 | | 25+4=10x+104 | | -4s-19=-19-4s | | 3v+3=1+3v | | -4-15z=-20-15z+16 | | 4x+5=2x+(-7) | | 2y-3-4=3+2y | | -0.5x=42 | | -2/5(x+2)=1/6(x+6) | | -6k+3=-8k-9 | | 13=5x/2-4/2 | | 48x^2-28x+6=0 | | -6k+3=-8k−9 | | 5y=2×+5 | | 13=5x-4/2 |

Equations solver categories