-2x(x-3)+6x=2x+3(x-4)

Simple and best practice solution for -2x(x-3)+6x=2x+3(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x(x-3)+6x=2x+3(x-4) equation:



-2x(x-3)+6x=2x+3(x-4)
We move all terms to the left:
-2x(x-3)+6x-(2x+3(x-4))=0
We add all the numbers together, and all the variables
6x-2x(x-3)-(2x+3(x-4))=0
We multiply parentheses
-2x^2+6x+6x-(2x+3(x-4))=0
We calculate terms in parentheses: -(2x+3(x-4)), so:
2x+3(x-4)
We multiply parentheses
2x+3x-12
We add all the numbers together, and all the variables
5x-12
Back to the equation:
-(5x-12)
We add all the numbers together, and all the variables
-2x^2+12x-(5x-12)=0
We get rid of parentheses
-2x^2+12x-5x+12=0
We add all the numbers together, and all the variables
-2x^2+7x+12=0
a = -2; b = 7; c = +12;
Δ = b2-4ac
Δ = 72-4·(-2)·12
Δ = 145
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{145}}{2*-2}=\frac{-7-\sqrt{145}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{145}}{2*-2}=\frac{-7+\sqrt{145}}{-4} $

See similar equations:

| 8t+3=4t-1 | | 2b-2=-10-2b | | -93=-3(1-5v | | 2v–-10=16 | | 2v-10=16 | | -3m-7=2m-6m | | 19+1.50h=14+2.75h | | 5-2f=-11 | | .75(3u-13)=2-u | | 6x-20+6x-4=180 | | 6×3c=8+11c | | 7x+6=9x-24 | | (.12x-20)-(2x-15)=Y | | 10^4p=4 | | 6(3x+3)=(-72) | | 4(2x¡7)=20 | | 9x-8=7x+14 | | X^3+2x=91 | | 3x/4+2=5 | | 19-4x=(-1) | | 4(8-2)/3x=10 | | 25¡3x=16 | | x/5+2=(-1) | | x/3-2=x/5-1 | | 7^2x-1=1÷49 | | 3(2x-5)+17=6x | | 32x(4x^2-1)^3=0 | | 4(3+2x)+5=6x+3 | | 22+4v=2(8-v) | | 4*(.6)^x=12 | | 4f-8=8 | | 8x-5x=10x |

Equations solver categories