-2x(x-8)=4(x+1)

Simple and best practice solution for -2x(x-8)=4(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x(x-8)=4(x+1) equation:



-2x(x-8)=4(x+1)
We move all terms to the left:
-2x(x-8)-(4(x+1))=0
We multiply parentheses
-2x^2+16x-(4(x+1))=0
We calculate terms in parentheses: -(4(x+1)), so:
4(x+1)
We multiply parentheses
4x+4
Back to the equation:
-(4x+4)
We get rid of parentheses
-2x^2+16x-4x-4=0
We add all the numbers together, and all the variables
-2x^2+12x-4=0
a = -2; b = 12; c = -4;
Δ = b2-4ac
Δ = 122-4·(-2)·(-4)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{7}}{2*-2}=\frac{-12-4\sqrt{7}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{7}}{2*-2}=\frac{-12+4\sqrt{7}}{-4} $

See similar equations:

| -9+3v=-1+5v | | 5(2x+3=35 | | -6x+2-6x=8 | | 4m=24.4 | | 7(2+5b)=40b-6 | | a/2+98=108 | | 128-6h=86 | | x-1(x/5)=68 | | 39x-11=34x+12 | | 2x+5=-2×+13 | | 17=a+5/23 | | -3+4(2x+5)=7 | | 21-41=-6x+5x | | 6x-24+10=9x-14-3x | | 9x-19=3x-5 | | 6=k•8 | | 6x-24+10=9x-14-3x* | | m-2/8=3 | | H(t)=-5t+10t+3 | | 2^2x-9(2^x)=0 | | -15+3-7x=43 | | 12=k/6+3 | | 5(2-3x)=46 | | 5(q-2)+3=3(q+1)+2 | | x/11+8=15 | | x^2-30=79 | | -6b-4=-112 | | 11(v-3)-5=3(v+10)+4 | | 4 ÷ 2− 1=t | | 3r+9=-12 | | 5(c-2)+3=2(c+2)+1 | | 1413+1=y |

Equations solver categories