-2x+(-1/2x+1)=6

Simple and best practice solution for -2x+(-1/2x+1)=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x+(-1/2x+1)=6 equation:



-2x+(-1/2x+1)=6
We move all terms to the left:
-2x+(-1/2x+1)-(6)=0
Domain of the equation: 2x+1)!=0
x∈R
We get rid of parentheses
-2x-1/2x+1-6=0
We multiply all the terms by the denominator
-2x*2x+1*2x-6*2x-1=0
Wy multiply elements
-4x^2+2x-12x-1=0
We add all the numbers together, and all the variables
-4x^2-10x-1=0
a = -4; b = -10; c = -1;
Δ = b2-4ac
Δ = -102-4·(-4)·(-1)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{21}}{2*-4}=\frac{10-2\sqrt{21}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{21}}{2*-4}=\frac{10+2\sqrt{21}}{-8} $

See similar equations:

| 7x-24+11=3x+20+ | | H(t)=-16t^2+320t+5 | | 15+8b=8(b+1) | | (x2+4)(x2+4)-11(x2+4)+24=0 | | k3-11=-5 | | 5^-2b=1/125 | | 16^-2a=64 | | -7=-6+n/12 | | 27+8r=7(-3+2r) | | (x2+3)(x2+3)2=4x2+12 | | 1/5(x-20)=44-x | | 2b+23=3(7b-5) | | (6x+7)=(11x-2)+90 | | 3x2+3x=17x−8 | | 5m+10=-80 | | -4-3m=-4m+3 | | -7x-38=11x+42 | | 9x^2+6=87 | | -14x-63=5x+117 | | x^2+4x+84=10 | | 3×-32=-7x+28 | | 17/5-6x=13 | | -21+7x=5x+17 | | (3x+5)(3x+5)+5(3x+5)+6=0 | | 3x−5​(x−5​)=−6+5x−18 | | 8x-23=6x-1 | | (6x+5)^2=3 | | -p-35=-3(1-p) | | 82+44+x+66=180 | | (x2-6)(x2-6)=-3x2+18 | | 4(b-3)=8 | | (3x-2)(3x-2)-4=9x-6 |

Equations solver categories