If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x-6=(3/2)(-2x-2)
We move all terms to the left:
-2x-6-((3/2)(-2x-2))=0
Domain of the equation: 2)(-2x-2))!=0We add all the numbers together, and all the variables
x∈R
-2x-((+3/2)(-2x-2))-6=0
We multiply parentheses ..
-((-6x^2+3/2*-2))-2x-6=0
We multiply all the terms by the denominator
-((-6x^2+3-2x*2*-2))-6*2*-2))=0
We calculate terms in parentheses: -((-6x^2+3-2x*2*-2)), so:We add all the numbers together, and all the variables
(-6x^2+3-2x*2*-2)
We get rid of parentheses
-6x^2-2x*2*+3-2
We add all the numbers together, and all the variables
-6x^2-2x*2*+1
Wy multiply elements
-6x^2-4x^2+1
We add all the numbers together, and all the variables
-10x^2+1
Back to the equation:
-(-10x^2+1)
-(-10x^2+1)=0
We get rid of parentheses
10x^2-1=0
a = 10; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·10·(-1)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*10}=\frac{0-2\sqrt{10}}{20} =-\frac{2\sqrt{10}}{20} =-\frac{\sqrt{10}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*10}=\frac{0+2\sqrt{10}}{20} =\frac{2\sqrt{10}}{20} =\frac{\sqrt{10}}{10} $
| -5x-36=-5(x=8)=4 | | 4=25x=15x+6 | | 5/6(12p+6)=-13p+4 | | 2x-6=(x-1) | | 6(x-6)+10=6x-26 | | 8x-20=12+4x | | -18+x=4 | | 8+7r=2+5 | | 4x+3.5=4.5 | | -5(3x-9)=2(x-5)-75 | | 2x+6=7+8x | | 3+4x=3(-x+9)38 | | 2x+6=7-3+8x | | -1=11-x | | 63-2x=13x-7x | | 2x+6=7-8x | | 2x+6=7-x | | p-5-7=-7 | | -15.1+r=2.6 | | 4x-4=11x+46 | | 6m/2m-3=-2 | | 6x+32=15x+38 | | -5y+12+8y−6−2= | | (3x-7)/2x=2 | | 6/15x=84 | | 4x+10+2x=180 | | 6+3g-1=7g+5-4 | | 4y+23=15y-32 | | -5(3x-29)=2(x-11)-3 | | 3x-5=4+2x. | | -2(8x-8)=96 | | 1/2(-8)=9+7x |