If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2+4x=0
a = -2; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-2)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-2}=\frac{-8}{-4} =+2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-2}=\frac{0}{-4} =0 $
| 5-8=2x+7 | | (x-3)=6x=7 | | -6(4x-6)+1=-24x+37 | | -10=-5y-65 | | 10t=12 | | 2x+16+40=7x-4 | | 6+2(3j-2)=4(j+1) | | 3k+17=8 | | 18w=8 | | x^2-5x+6=3x^2+4x | | -2j–8=-j | | 11x-6+70=21x+4 | | x^2-5x+6=3x | | 0=4x^3+21x^2+21x+4 | | 11b^2-22=6b | | -6(4x-6)+1=-24×+37 | | 11p^2-30p+19=0 | | 7x-5+8x-6=139 | | 5r-8=7 | | 2x^2+14=−84 | | 9x+1=1x-23 | | (2x-30)+(3x-54)+(4x-72)=48 | | 1/3x+8=21 | | -2x(7x+15)=18+2x | | 6+3y=21 | | 7.2f=f | | 2(6x+4)-4=12x+4 | | 5x-5+18x-3=80 | | 2/10(x-2)=1/10(x+6) | | 3-(4w+5)=0.5(8w+28) | | s-63/7=4 | | 6x+19=89 |