If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2+8x+7=0
a = -2; b = 8; c = +7;
Δ = b2-4ac
Δ = 82-4·(-2)·7
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{30}}{2*-2}=\frac{-8-2\sqrt{30}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{30}}{2*-2}=\frac{-8+2\sqrt{30}}{-4} $
| -6xx=-18 | | -6.x=-18 | | y-3,7=5 | | X(3x^2+6x+11)+6=0 | | 2-x+2*x=32 | | 2-x+2-x=32 | | x+21,7=23,04 | | 2/7x=1/2+3/14x | | 3x³+6x^2+11x+6=0 | | 5x———=185 | | 5x————=185 | | 9a+12-5a=-72 | | p÷2=9 | | 4(t-1)=t+8 | | a/5+4=-14 | | P=102)2x+5+2x+5+2x+5+2x+5+2x+5+2x+5 | | F(X)=10x-5x*2 | | 4x^2-8x-4=8 | | x+26=-2x+11 | | F(X)=10x-5x2 | | 161=5x*x | | P=1022x+5+2x+5+2x+5+2x+5+2x+5 | | 3x^2-120=-9x | | 3*x+5=25+3*x | | 3x-28=2(3x-2) | | 8x-3=-19x= | | -3x^2-120=-9x | | x+x*20=270 | | -18x-277=-4-3x^2 | | (x-3)*2=(4x-6) | | 7-3*x=-8-8*x | | 3x-9=-3x+39 |