If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2-2x+1=0
a = -2; b = -2; c = +1;
Δ = b2-4ac
Δ = -22-4·(-2)·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{3}}{2*-2}=\frac{2-2\sqrt{3}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{3}}{2*-2}=\frac{2+2\sqrt{3}}{-4} $
| -2/5c+-2=9 | | a/3-3/6=1/3 | | 59-y=272 | | 2.7c-45=3.6c-9 | | 14x−24= | | −2x+8=(0.25)x | | 1.4x+0.52=1.7x-0.5 | | 16-7v=2 | | z×4=40 | | -3y+4=-4(-9y+10) | | 2x+20+2x=60 | | 9/10x=6/25/ | | 6x+10+2x=42 | | 8/3=10/n | | 3(5x-3)=4(3x= | | 3(5x-3)=4(3x | | 13=5y-79 | | -2x=4x+-2 | | -8.5x+0.43=-2.97 | | 19=2w+11 | | 3/4x+3=5/8x+4 | | q-467=268 | | (3x+19)=2 | | 6=p/20-5 | | -8(y+9)=-5(9y+9) | | 2x2-4x-1=0 | | j+-408=-139 | | (3)/(4)x+3=(5)/(8)x+4 | | 8r+(-9r)=(-13) | | 4/7z=24 | | f+33=79 | | 0.4y+0.9=2.5 |