If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2-2x+40=0
a = -2; b = -2; c = +40;
Δ = b2-4ac
Δ = -22-4·(-2)·40
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-18}{2*-2}=\frac{-16}{-4} =+4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+18}{2*-2}=\frac{20}{-4} =-5 $
| 2x-8=6x-15 | | p+2p-p+1=19 | | (3x9)x1=3x9 | | 17c-9=5(8+2c) | | x÷16=3 | | 3(x–1)=9+x | | m^2=16-16m | | 221/12=-8x+3/2x | | 11y+29=106 | | p-6/3=1 | | -4(x-8)+4x=4x+4(6x-6) | | -3(r+4)+-7=8 | | 13=v/4-9 | | (3y-1)/4-(2y+3)/3=(1-7y)/6 | | -3-6x+7=42-6x | | -31=8+-6p-7p | | -2(v-8)=-10 | | 2/3(3x+9=-2(2x+6 | | y/2+-6=-7 | | 20b-14=3(3b-10) | | k/2+15=19 | | x=10/3x | | P=180-(2q-3) | | 100a2-9=55 | | (5-2j)(2+4J)=0 | | x-12/6=-2 | | −13−3x=−10 | | 2(p-5)+5=7 | | x-126=-2 | | 17a+1=6(6-3a) | | 18z+-10z+-8=0 | | 4+m/2=-3 |