-2y(6y-3)-y=2(y-4)

Simple and best practice solution for -2y(6y-3)-y=2(y-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2y(6y-3)-y=2(y-4) equation:


Simplifying
-2y(6y + -3) + -1y = 2(y + -4)

Reorder the terms:
-2y(-3 + 6y) + -1y = 2(y + -4)
(-3 * -2y + 6y * -2y) + -1y = 2(y + -4)
(6y + -12y2) + -1y = 2(y + -4)

Reorder the terms:
6y + -1y + -12y2 = 2(y + -4)

Combine like terms: 6y + -1y = 5y
5y + -12y2 = 2(y + -4)

Reorder the terms:
5y + -12y2 = 2(-4 + y)
5y + -12y2 = (-4 * 2 + y * 2)
5y + -12y2 = (-8 + 2y)

Solving
5y + -12y2 = -8 + 2y

Solving for variable 'y'.

Reorder the terms:
8 + 5y + -2y + -12y2 = -8 + 2y + 8 + -2y

Combine like terms: 5y + -2y = 3y
8 + 3y + -12y2 = -8 + 2y + 8 + -2y

Reorder the terms:
8 + 3y + -12y2 = -8 + 8 + 2y + -2y

Combine like terms: -8 + 8 = 0
8 + 3y + -12y2 = 0 + 2y + -2y
8 + 3y + -12y2 = 2y + -2y

Combine like terms: 2y + -2y = 0
8 + 3y + -12y2 = 0

Begin completing the square.  Divide all terms by
-12 the coefficient of the squared term: 

Divide each side by '-12'.
-0.6666666667 + -0.25y + y2 = 0

Move the constant term to the right:

Add '0.6666666667' to each side of the equation.
-0.6666666667 + -0.25y + 0.6666666667 + y2 = 0 + 0.6666666667

Reorder the terms:
-0.6666666667 + 0.6666666667 + -0.25y + y2 = 0 + 0.6666666667

Combine like terms: -0.6666666667 + 0.6666666667 = 0.0000000000
0.0000000000 + -0.25y + y2 = 0 + 0.6666666667
-0.25y + y2 = 0 + 0.6666666667

Combine like terms: 0 + 0.6666666667 = 0.6666666667
-0.25y + y2 = 0.6666666667

The y term is -0.25y.  Take half its coefficient (-0.125).
Square it (0.015625) and add it to both sides.

Add '0.015625' to each side of the equation.
-0.25y + 0.015625 + y2 = 0.6666666667 + 0.015625

Reorder the terms:
0.015625 + -0.25y + y2 = 0.6666666667 + 0.015625

Combine like terms: 0.6666666667 + 0.015625 = 0.6822916667
0.015625 + -0.25y + y2 = 0.6822916667

Factor a perfect square on the left side:
(y + -0.125)(y + -0.125) = 0.6822916667

Calculate the square root of the right side: 0.826009483

Break this problem into two subproblems by setting 
(y + -0.125) equal to 0.826009483 and -0.826009483.

Subproblem 1

y + -0.125 = 0.826009483 Simplifying y + -0.125 = 0.826009483 Reorder the terms: -0.125 + y = 0.826009483 Solving -0.125 + y = 0.826009483 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.125' to each side of the equation. -0.125 + 0.125 + y = 0.826009483 + 0.125 Combine like terms: -0.125 + 0.125 = 0.000 0.000 + y = 0.826009483 + 0.125 y = 0.826009483 + 0.125 Combine like terms: 0.826009483 + 0.125 = 0.951009483 y = 0.951009483 Simplifying y = 0.951009483

Subproblem 2

y + -0.125 = -0.826009483 Simplifying y + -0.125 = -0.826009483 Reorder the terms: -0.125 + y = -0.826009483 Solving -0.125 + y = -0.826009483 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.125' to each side of the equation. -0.125 + 0.125 + y = -0.826009483 + 0.125 Combine like terms: -0.125 + 0.125 = 0.000 0.000 + y = -0.826009483 + 0.125 y = -0.826009483 + 0.125 Combine like terms: -0.826009483 + 0.125 = -0.701009483 y = -0.701009483 Simplifying y = -0.701009483

Solution

The solution to the problem is based on the solutions from the subproblems. y = {0.951009483, -0.701009483}

See similar equations:

| 0.5x=42 | | 64/n=7 | | 9*n=108 | | n*n=126 | | 2500/60= | | 56/7 | | 2500/60 | | 60*25= | | 7x(6x+5)=-2 | | (7x-20)+4x+90=180 | | sin(-4x)/7x | | 3x+33=92 | | -250=-5(6x+8) | | .8=.285+c | | w/2=54 | | -2(4w-2x-3)= | | -17+6m=8m+3m(m-4) | | v/6-=96 | | 6/v=96 | | -5(1+3n)=-35-5n | | x-4x-8=5x+28 | | 4/x=72 | | (6-2v+4x)(-2)= | | -30+2x=7(3-7x) | | 28/30 | | -3y+10=19 | | 3(3)+.75(2)=(3+.75)x | | u/3=42 | | 6x+7=-8+3x | | 0.5*x=0.142857142857 | | 23=3h-10 | | -x^2+27x-162=0 |

Equations solver categories