-2y-2=(2y-3)(y+1)

Simple and best practice solution for -2y-2=(2y-3)(y+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2y-2=(2y-3)(y+1) equation:



-2y-2=(2y-3)(y+1)
We move all terms to the left:
-2y-2-((2y-3)(y+1))=0
We multiply parentheses ..
-((+2y^2+2y-3y-3))-2y-2=0
We calculate terms in parentheses: -((+2y^2+2y-3y-3)), so:
(+2y^2+2y-3y-3)
We get rid of parentheses
2y^2+2y-3y-3
We add all the numbers together, and all the variables
2y^2-1y-3
Back to the equation:
-(2y^2-1y-3)
We add all the numbers together, and all the variables
-2y-(2y^2-1y-3)-2=0
We get rid of parentheses
-2y^2-2y+1y+3-2=0
We add all the numbers together, and all the variables
-2y^2-1y+1=0
a = -2; b = -1; c = +1;
Δ = b2-4ac
Δ = -12-4·(-2)·1
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-3}{2*-2}=\frac{-2}{-4} =1/2 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+3}{2*-2}=\frac{4}{-4} =-1 $

See similar equations:

| 8u^2+8u=48 | | (y+18)2=77. | | (x^-9)=19683 | | (2/3)x-7=-3 | | x^-9=19683 | | -2x=12/x | | 6s^2+18s^2=540 | | 2(12+8a)+2(3a-9)=12a-10+8a | | (9x-11)+(5x+3)=180 | | -6(7p+4)=-11(p-11)+10 | | 27+7k=-12(k-7) | | -4(n+6)=-27-n | | -12n-5=3n-10(10n-8) | | 8r+7(11r-12)=6-5r | | 6n-12=-4(3-5n) | | 7y=4y+3 | | 5n-12(n+12)=60+10n | | x(4x+5)=51 | | 5x+4(8-2x)=-7 | | n×8=96 | | A=5x9 | | 12=−4.9t^2+17t+2.2 | | √2x+6=6x-1 | | (=2x+40) | | 2.5=0.5a^-4 | | 10=–10(7+q) | | 3a-13=-40 | | -9(12+3x)+6x=-7(1+3x) | | -4(3n+8)+16=-4n-8(n+2) | | -9x=-13=-103 | | 5x+18=2x+-6 | | -6(-10-2n)-n=60+11n |

Equations solver categories