-3(-2x-4)=-5x(-3x+6)

Simple and best practice solution for -3(-2x-4)=-5x(-3x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(-2x-4)=-5x(-3x+6) equation:



-3(-2x-4)=-5x(-3x+6)
We move all terms to the left:
-3(-2x-4)-(-5x(-3x+6))=0
We multiply parentheses
6x-(-5x(-3x+6))+12=0
We calculate terms in parentheses: -(-5x(-3x+6)), so:
-5x(-3x+6)
We multiply parentheses
15x^2-30x
Back to the equation:
-(15x^2-30x)
We get rid of parentheses
-15x^2+6x+30x+12=0
We add all the numbers together, and all the variables
-15x^2+36x+12=0
a = -15; b = 36; c = +12;
Δ = b2-4ac
Δ = 362-4·(-15)·12
Δ = 2016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2016}=\sqrt{144*14}=\sqrt{144}*\sqrt{14}=12\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-12\sqrt{14}}{2*-15}=\frac{-36-12\sqrt{14}}{-30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+12\sqrt{14}}{2*-15}=\frac{-36+12\sqrt{14}}{-30} $

See similar equations:

| 12(3x+4)=6(7x=2) | | -3(-2x-4)=-5x(-3x+6 | | 0=-16t^2+14 | | (2x+10)(2x+6)-60=140 | | x+5/4=-3 | | 3.5=31.5w | | 102=69-7x | | 3y+y=144 | | 171-u=215 | | 168=-v+99 | | (4/5)y+(1/3)y=16/5 | | 22-4x=2x+126 | | 11x-3=7x=25 | | (4/5)y-4=(-1/3)y-(4/5) | | 3x=-1/18 | | 10x2+78x+144=0 | | 15-24-4x=-79 | | 3x=438 | | 8n+15=4 | | -4t^2+14-12=0 | | 0.25t-0.88=0.03t | | 0.5p-3.5=1.2 | | 14-3x=82 | | 6x-18-3x+12=3 | | 6.5x+2x=836.5 | | (2x+10)(x+6)=2x2^+258 | | -x+198=43 | | 1.22(x)=-11.8x+-3.0 | | 56=156-x | | 8x+2=6+4x | | -u+58=196 | | -3(-31/3x+1)=-43 |

Equations solver categories