-3(-2x-5)=-5(3x+5)+5/4

Simple and best practice solution for -3(-2x-5)=-5(3x+5)+5/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(-2x-5)=-5(3x+5)+5/4 equation:



-3(-2x-5)=-5(3x+5)+5/4
We move all terms to the left:
-3(-2x-5)-(-5(3x+5)+5/4)=0
We multiply parentheses
6x-(-5(3x+5)+5/4)+15=0
We multiply all the terms by the denominator
6x*4)-(-5(3x+5)+5+15*4)=0
We add all the numbers together, and all the variables
6x*4)-(-5(3x+5)=0
We multiply parentheses
6x*4)-(-15x-25=0
Wy multiply elements
24x^2-15x-25=0
a = 24; b = -15; c = -25;
Δ = b2-4ac
Δ = -152-4·24·(-25)
Δ = 2625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2625}=\sqrt{25*105}=\sqrt{25}*\sqrt{105}=5\sqrt{105}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-5\sqrt{105}}{2*24}=\frac{15-5\sqrt{105}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+5\sqrt{105}}{2*24}=\frac{15+5\sqrt{105}}{48} $

See similar equations:

| 6k+12=4k-18 | | 4v=-2v+18 | | (2y-40)+(y+43)+(y+21)=180 | | -4.3h=19.2+19.7h | | -9(u+76)=72 | | (2y-40)+(y+43)+(y-21)=180 | | 7(w-91)=14 | | x+{1}{7}={5}{7} | | 20w-14=10w+16 | | (2s-9)+2s+(2s+9)=180 | | -19+15q=16q | | 50+8t=6t+70 | | -6×+8x-25=-35 | | 5n+5=20(4+.25n) | | -4g+19-18g=-19g-17 | | 10y-(4y+)=-20 | | -57=-9+6h | | 2(24)+y=76 | | 16=1/2x(4) | | X+5y+2y=21 | | (t+19)+(9t-11)+(t+18)=180 | | 300=1/2*2000*x^2 | | (x-3)(2x^2+5x-12)=0 | | 7x+19.4x=6.3 | | 31+5s+(s+17)=180 | | 16.4q-11.28=14.8+18q | | -19-18d=-5-19d | | y=−3+1 | | 5x–2=11x–26 | | -7.2m-16.47=4.99+14.5m+2.41 | | 12.6-3.3g=-6.1g | | h=-2h+15 |

Equations solver categories