-3(-7v+1)-4v=2(v-2)-2

Simple and best practice solution for -3(-7v+1)-4v=2(v-2)-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(-7v+1)-4v=2(v-2)-2 equation:


Simplifying
-3(-7v + 1) + -4v = 2(v + -2) + -2

Reorder the terms:
-3(1 + -7v) + -4v = 2(v + -2) + -2
(1 * -3 + -7v * -3) + -4v = 2(v + -2) + -2
(-3 + 21v) + -4v = 2(v + -2) + -2

Combine like terms: 21v + -4v = 17v
-3 + 17v = 2(v + -2) + -2

Reorder the terms:
-3 + 17v = 2(-2 + v) + -2
-3 + 17v = (-2 * 2 + v * 2) + -2
-3 + 17v = (-4 + 2v) + -2

Reorder the terms:
-3 + 17v = -4 + -2 + 2v

Combine like terms: -4 + -2 = -6
-3 + 17v = -6 + 2v

Solving
-3 + 17v = -6 + 2v

Solving for variable 'v'.

Move all terms containing v to the left, all other terms to the right.

Add '-2v' to each side of the equation.
-3 + 17v + -2v = -6 + 2v + -2v

Combine like terms: 17v + -2v = 15v
-3 + 15v = -6 + 2v + -2v

Combine like terms: 2v + -2v = 0
-3 + 15v = -6 + 0
-3 + 15v = -6

Add '3' to each side of the equation.
-3 + 3 + 15v = -6 + 3

Combine like terms: -3 + 3 = 0
0 + 15v = -6 + 3
15v = -6 + 3

Combine like terms: -6 + 3 = -3
15v = -3

Divide each side by '15'.
v = -0.2

Simplifying
v = -0.2

See similar equations:

| -3x(6x-6)= | | 13.49y=-9.2 | | 4=(x/(0.9-2x)^2) | | (15x^2y)(1/3x^6) | | 8+2(4u-3)=-6(3u-1)+8u | | c^2-5c-36= | | 366=6/7q | | 460=4/7q | | -5s+9p=tp-9 | | 207=462-5/7q | | 9x-3=24x+7 | | -2x^2-5x-9=0 | | 4.9x^2+2.74x=10 | | 3-(3x-5)=8-2x | | -2(5u-7)+6u=2(u+3) | | (-6x^6y^4)(10x^7y^6)= | | 28=490-3/7q | | 3.7(3.7)-0.1y=9.2 | | -2u(5u-7)+6u=2(u+3) | | 13.96-0.1y=9.2 | | 6x=1x+2+4x | | x(x-5)=x-22 | | 20*10-19= | | 0=2x^3+3x^2-1680x | | 5x^2-9x+7=0 | | -2(u+2)=6u-7+5(2u+1) | | 3.7(3.7)-0.1(92)=9.2 | | 3y-1=-13-4y | | -9x^2+x+2=0 | | 4b^2+32b+60=0 | | -3(-7u+5)-9u=2(u-5)-9 | | 3.7x-0.1y=-9.2 |

Equations solver categories