If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying -3(-1m + -4) + -2(m + -3) + 5m = 6m + -1(m + 3) Reorder the terms: -3(-4 + -1m) + -2(m + -3) + 5m = 6m + -1(m + 3) (-4 * -3 + -1m * -3) + -2(m + -3) + 5m = 6m + -1(m + 3) (12 + 3m) + -2(m + -3) + 5m = 6m + -1(m + 3) Reorder the terms: 12 + 3m + -2(-3 + m) + 5m = 6m + -1(m + 3) 12 + 3m + (-3 * -2 + m * -2) + 5m = 6m + -1(m + 3) 12 + 3m + (6 + -2m) + 5m = 6m + -1(m + 3) Reorder the terms: 12 + 6 + 3m + -2m + 5m = 6m + -1(m + 3) Combine like terms: 12 + 6 = 18 18 + 3m + -2m + 5m = 6m + -1(m + 3) Combine like terms: 3m + -2m = 1m 18 + 1m + 5m = 6m + -1(m + 3) Combine like terms: 1m + 5m = 6m 18 + 6m = 6m + -1(m + 3) Reorder the terms: 18 + 6m = 6m + -1(3 + m) 18 + 6m = 6m + (3 * -1 + m * -1) 18 + 6m = 6m + (-3 + -1m) Reorder the terms: 18 + 6m = -3 + 6m + -1m Combine like terms: 6m + -1m = 5m 18 + 6m = -3 + 5m Solving 18 + 6m = -3 + 5m Solving for variable 'm'. Move all terms containing m to the left, all other terms to the right. Add '-5m' to each side of the equation. 18 + 6m + -5m = -3 + 5m + -5m Combine like terms: 6m + -5m = 1m 18 + 1m = -3 + 5m + -5m Combine like terms: 5m + -5m = 0 18 + 1m = -3 + 0 18 + 1m = -3 Add '-18' to each side of the equation. 18 + -18 + 1m = -3 + -18 Combine like terms: 18 + -18 = 0 0 + 1m = -3 + -18 1m = -3 + -18 Combine like terms: -3 + -18 = -21 1m = -21 Divide each side by '1'. m = -21 Simplifying m = -21
| 6+8z-1=9z+26-42 | | x^2-3x^2+8x^2= | | -3(2b+4)+(7b-8)=0 | | 11x+9-4=10x+-4 | | x*x*x+3x-20=0 | | 6x+13=163 | | 80*2/3 | | xcubed+3x-20=0 | | -1/2=-1/3*u-7/5 | | -1/3*u-7/5 | | 9x-45y=135 | | x(8-x)+9x=-6 | | 10n-2(3n-4)=7n-22 | | x(8-x)+9whenx=-6 | | 6/7/2/49 | | 2(g-4)+4=4(5-g) | | 10+x-8=22 | | 9(2x-4)=3(6x+5) | | 5(-4)+2y=18 | | 6+2x-4=5x+4-2x | | 230*31/49*14/25 | | 5(x+6)-6=33-2x-9+7x | | -5+5(x-2)=13x+5-8x | | -3/2+4/3a=-6/5 | | 5y+16y=63 | | -3/24x=-6 | | 6(a-6)+10=4(a-4) | | 2x-(x-3)=8 | | (x/18)=-8 | | -3/4+4/3u=-6/5 | | 1/5x+5=14 | | 5.3q-3.9-5.2q=-.9-1.2 |