-3(1+b)=-b(b+6)

Simple and best practice solution for -3(1+b)=-b(b+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(1+b)=-b(b+6) equation:



-3(1+b)=-b(b+6)
We move all terms to the left:
-3(1+b)-(-b(b+6))=0
We add all the numbers together, and all the variables
-3(b+1)-(-b(b+6))=0
We multiply parentheses
-3b-(-b(b+6))-3=0
We calculate terms in parentheses: -(-b(b+6)), so:
-b(b+6)
We multiply parentheses
-b^2-6b
We add all the numbers together, and all the variables
-1b^2-6b
Back to the equation:
-(-1b^2-6b)
We get rid of parentheses
1b^2+6b-3b-3=0
We add all the numbers together, and all the variables
b^2+3b-3=0
a = 1; b = 3; c = -3;
Δ = b2-4ac
Δ = 32-4·1·(-3)
Δ = 21
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{21}}{2*1}=\frac{-3-\sqrt{21}}{2} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{21}}{2*1}=\frac{-3+\sqrt{21}}{2} $

See similar equations:

| x+(4/7)=3/8 | | -10+16k+4K=-10+20k | | x+(3/7)=(1/7) | | (X-5)+(x+5)+40=180 | | 0.6m-0.2=3/50 | | 4x-2(3x+2)=18 | | -12x^2+25x+22=0 | | 13x-5+3x-3=12x-2 | | -9b+7=-2-9b+9 | | 1/10x=(-3) | | 3t-4=19 | | 3(15x+75)=720 | | 0.5^x=0.125 | | 5x+9=5x+42 | | -10+3q=-13+15q-12q | | q−-65=82 | | w+45=93 | | (X+3)+(x-3)+80=180 | | -8y+4=44 | | 5-3x=4-2x | | 2x+2-1x=1-2-1x | | 1d/2d-5=2 | | -(x-2)+12=x+14-x | | 4x+10=5x+20=6x | | b+-2=-7 | | 40/10=90/x | | -8k-3(4K-7)=-20k-18 | | F(x)=3^2+8 | | 7m+3=-13m+20m+3 | | u-18=-13 | | 3(a-6)=−5a-(7+3a) | | 10/40=x/90 |

Equations solver categories