-3(1+n)-2n=-6n(n-2)

Simple and best practice solution for -3(1+n)-2n=-6n(n-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(1+n)-2n=-6n(n-2) equation:



-3(1+n)-2n=-6n(n-2)
We move all terms to the left:
-3(1+n)-2n-(-6n(n-2))=0
We add all the numbers together, and all the variables
-3(n+1)-2n-(-6n(n-2))=0
We add all the numbers together, and all the variables
-2n-3(n+1)-(-6n(n-2))=0
We multiply parentheses
-2n-3n-(-6n(n-2))-3=0
We calculate terms in parentheses: -(-6n(n-2)), so:
-6n(n-2)
We multiply parentheses
-6n^2+12n
Back to the equation:
-(-6n^2+12n)
We add all the numbers together, and all the variables
-(-6n^2+12n)-5n-3=0
We get rid of parentheses
6n^2-12n-5n-3=0
We add all the numbers together, and all the variables
6n^2-17n-3=0
a = 6; b = -17; c = -3;
Δ = b2-4ac
Δ = -172-4·6·(-3)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{361}=19$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-19}{2*6}=\frac{-2}{12} =-1/6 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+19}{2*6}=\frac{36}{12} =3 $

See similar equations:

| 7w+9-9=8w-6-9 | | 20=t/20 | | 3x-6x+2=8x+29-5x | | x+25+94+x=180 | | j-j+-3j=9 | | p-339=-111 | | 49=w+6w | | x–12=–3x+1 | | -10x+4=30 | | (5x+8)(7x-16)=180 | | 2(2x+5)=8x+9-4x+1 | | r-328=152 | | -16=4+5w | | 6=h+-698 | | (4x+23)+(10x-1)+78=180 | | -6x+9=2-5(x-1) | | 2/3(6x-3)=2x-5 | | x-4x-21=20 | | s^2+6s=27 | | t-62=304 | | 2(x+3)+2(1/2x)=24 | | y=25,000(0.85)5 | | x+48+50=180 | | g+524=592 | | w-967=-543 | | -3(-7-6x)=-69 | | u+49=53 | | -x-5(1+5x)=7x+28 | | 2(5x-25)+5x=-5 | | -6x+9=2-5x-1 | | 2q−8+8q=7q−8+3q | | y+909=973 |

Equations solver categories