-3(2w+5)+7w=5w(w-11)

Simple and best practice solution for -3(2w+5)+7w=5w(w-11) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(2w+5)+7w=5w(w-11) equation:



-3(2w+5)+7w=5w(w-11)
We move all terms to the left:
-3(2w+5)+7w-(5w(w-11))=0
We add all the numbers together, and all the variables
7w-3(2w+5)-(5w(w-11))=0
We multiply parentheses
7w-6w-(5w(w-11))-15=0
We calculate terms in parentheses: -(5w(w-11)), so:
5w(w-11)
We multiply parentheses
5w^2-55w
Back to the equation:
-(5w^2-55w)
We add all the numbers together, and all the variables
w-(5w^2-55w)-15=0
We get rid of parentheses
-5w^2+w+55w-15=0
We add all the numbers together, and all the variables
-5w^2+56w-15=0
a = -5; b = 56; c = -15;
Δ = b2-4ac
Δ = 562-4·(-5)·(-15)
Δ = 2836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2836}=\sqrt{4*709}=\sqrt{4}*\sqrt{709}=2\sqrt{709}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-2\sqrt{709}}{2*-5}=\frac{-56-2\sqrt{709}}{-10} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+2\sqrt{709}}{2*-5}=\frac{-56+2\sqrt{709}}{-10} $

See similar equations:

| 3^x-4=6 | | 8x=4x-48 | | 2x+9=7x=6x | | 5+6a+18= | | 3^(x-4)=6 | | 5+6a+18=+a | | x+2=2×-3 | | -(8+12k)=2(8k-3) | | 7+3(y-8)=23 | | -½(x–6)=4 | | 900=j+309 | | 11x-4(3x-8)=37 | | 2(13x+18)=-23(x-4) | | –10t−4=2−9t | | 4(x-)=4x-5 | | 48*56=3*7*2c | | 5(10x+12)=-40(x-3) | | -5z+5=9 | | 6^(8x)=1.2^(11x+9) | | H=43+m | | 20(-12x+10)=38(x-2) | | 6/9=u/12u= | | 9+2(y-8)=24 | | 6^8x=1.2^11x+9 | | x+0.07x=22.90 | | (2x)°+(3x)°=90° | | 6/9=u/12= | | 54=12w-6w | | 20(-9x+12)=-8(x-4) | | -4-5=3g | | 0.65=x4 | | 12-6n=-36 |

Equations solver categories