-3(4n+2)=-4n+-2n(4n-6)

Simple and best practice solution for -3(4n+2)=-4n+-2n(4n-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(4n+2)=-4n+-2n(4n-6) equation:



-3(4n+2)=-4n+-2n(4n-6)
We move all terms to the left:
-3(4n+2)-(-4n+-2n(4n-6))=0
We use the square of the difference formula
-3(4n+2)-(-4n-2n(4n-6))=0
We multiply parentheses
-12n-(-4n-2n(4n-6))-6=0
We calculate terms in parentheses: -(-4n-2n(4n-6)), so:
-4n-2n(4n-6)
We multiply parentheses
-8n^2-4n+12n
We add all the numbers together, and all the variables
-8n^2+8n
Back to the equation:
-(-8n^2+8n)
We get rid of parentheses
8n^2-8n-12n-6=0
We add all the numbers together, and all the variables
8n^2-20n-6=0
a = 8; b = -20; c = -6;
Δ = b2-4ac
Δ = -202-4·8·(-6)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{37}}{2*8}=\frac{20-4\sqrt{37}}{16} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{37}}{2*8}=\frac{20+4\sqrt{37}}{16} $

See similar equations:

| 7/16x=2 | | -12x+12=-144 | | 6g-17=13 | | x/4+2=x/5 | | 9(j+7)-11=88 | | 5t17.56=30.16 | | 85+120+101+x+3x-6=540 | | 2/(-8-3k)=11 | | 8s-10s+6=18 | | 30.16=17.56t5) | | 9(j+7)=88 | | -99=-9(q-87) | | 11=3-4/3m | | 2.8-3x=12.1-6x | | 4n+2=6n-30 | | 6(2x-4)-9=51 | | -7(b+77)=28 | | 3(8x-5)=4+5x | | 5(3x−6)=4(x+1) | | 35-n=12 | | 4(f-14)-4=8 | | -4x+51=-51 | | 7-j=11 | | v=4(3) | | 2i+3=45 | | 13=k-13 | | 1x-7=23 | | 2x/3.1x=6.4 | | 6(x-6)+16=8x-10 | | m-(-5)=15 | | 2y+40=2y-5 | | 9y=3×-27 |

Equations solver categories