-3(6-x+5x)=5x(3+x)

Simple and best practice solution for -3(6-x+5x)=5x(3+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(6-x+5x)=5x(3+x) equation:



-3(6-x+5x)=5x(3+x)
We move all terms to the left:
-3(6-x+5x)-(5x(3+x))=0
We add all the numbers together, and all the variables
-3(4x+6)-(5x(x+3))=0
We multiply parentheses
-12x-(5x(x+3))-18=0
We calculate terms in parentheses: -(5x(x+3)), so:
5x(x+3)
We multiply parentheses
5x^2+15x
Back to the equation:
-(5x^2+15x)
We get rid of parentheses
-5x^2-12x-15x-18=0
We add all the numbers together, and all the variables
-5x^2-27x-18=0
a = -5; b = -27; c = -18;
Δ = b2-4ac
Δ = -272-4·(-5)·(-18)
Δ = 369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{369}=\sqrt{9*41}=\sqrt{9}*\sqrt{41}=3\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-3\sqrt{41}}{2*-5}=\frac{27-3\sqrt{41}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+3\sqrt{41}}{2*-5}=\frac{27+3\sqrt{41}}{-10} $

See similar equations:

| 7y+2=y | | 1/9x+6=3x-2 | | -2(t+3)-t-4=-3(t(4)+2 | | 10x-8x-5=20x-6x+1 | | x/3-10=3/2 | | X-0.1x=21 | | 1/4x+1/5=-5 | | x/8-x/9=3 | | (x-1)=3x+3 | | 1+7x=-9+2x | | 6x-6=15x-15 | | 5/5b=1/3 | | 4(x+4)^2-80=0 | | (7/4)x-1=(7/3)x-4 | | Y=7y+2 | | r÷6-3=15 | | 48=38-2(3-4w) | | 5x^2+28x+19=0 | | 2X(3x=5x+7) | | -2y+3(-8y-2)=3-8(5-y) | | 0=10x^2+22x-66 | | 5m+8=64 | | 3x-7(x-1)=3-2(x+3) | | -4.x+5=11 | | 3·(z÷6)=0.9 | | -5y-9(3y+9)=-5+6(-8-y) | | 3x+5(138-x)=540 | | 18+6(z-3)=5z3 | | X^2+5=y/87 | | 4+55/a=41 | | x=55*94-20 | | 2t+1+5(t-3)=3(t+1)+t |

Equations solver categories