-3(8p+3)-2(2-17p)-3(6+3p)=0

Simple and best practice solution for -3(8p+3)-2(2-17p)-3(6+3p)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(8p+3)-2(2-17p)-3(6+3p)=0 equation:


Simplifying
-3(8p + 3) + -2(2 + -17p) + -3(6 + 3p) = 0

Reorder the terms:
-3(3 + 8p) + -2(2 + -17p) + -3(6 + 3p) = 0
(3 * -3 + 8p * -3) + -2(2 + -17p) + -3(6 + 3p) = 0
(-9 + -24p) + -2(2 + -17p) + -3(6 + 3p) = 0
-9 + -24p + (2 * -2 + -17p * -2) + -3(6 + 3p) = 0
-9 + -24p + (-4 + 34p) + -3(6 + 3p) = 0
-9 + -24p + -4 + 34p + (6 * -3 + 3p * -3) = 0
-9 + -24p + -4 + 34p + (-18 + -9p) = 0

Reorder the terms:
-9 + -4 + -18 + -24p + 34p + -9p = 0

Combine like terms: -9 + -4 = -13
-13 + -18 + -24p + 34p + -9p = 0

Combine like terms: -13 + -18 = -31
-31 + -24p + 34p + -9p = 0

Combine like terms: -24p + 34p = 10p
-31 + 10p + -9p = 0

Combine like terms: 10p + -9p = 1p
-31 + 1p = 0

Solving
-31 + 1p = 0

Solving for variable 'p'.

Move all terms containing p to the left, all other terms to the right.

Add '31' to each side of the equation.
-31 + 31 + 1p = 0 + 31

Combine like terms: -31 + 31 = 0
0 + 1p = 0 + 31
1p = 0 + 31

Combine like terms: 0 + 31 = 31
1p = 31

Divide each side by '1'.
p = 31

Simplifying
p = 31

See similar equations:

| 0.05s+1.1s-200=0 | | 3p=2p | | b^2-9b-22=0 | | 7-4p=2p-3 | | 2x^2(3x-4xy)= | | 2(x+9)=16-4(x+7) | | x-9=x/2 | | x-9=x/9 | | 2x^2(3x-4xy)=0 | | 3(10-4x)=-30 | | 4h^2+12h+9=h^2+144 | | 3h^2+12h+-135=0 | | 3(5x-7)=-51 | | 12.6x-4.9x=154 | | 82=(4x+25) | | 5x+7=3(x+1) | | 98.6-f=129.2 | | -16-m^2-10m=0 | | -20y=4y^2+25 | | 2x+1.6667=3x-1.6667 | | (15+m)=2m+3 | | 2x-1=5x-11 | | -3X=33 | | 4(2x+10)=8 | | (x^3+4xy-7y^2)-(5x^3+7xy+y^2)= | | a-11=-25 | | abs(5x^2+3x-1)-2x=1 | | 3b^2-27b-66=0 | | -4(9+4x)=60 | | 4w^2=-5w+6 | | x^2+x-3.75=0 | | -3x-9=-2x+11 |

Equations solver categories