-3(x-1)(x-1)+6=-200

Simple and best practice solution for -3(x-1)(x-1)+6=-200 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(x-1)(x-1)+6=-200 equation:


Simplifying
-3(x + -1)(x + -1) + 6 = -200

Reorder the terms:
-3(-1 + x)(x + -1) + 6 = -200

Reorder the terms:
-3(-1 + x)(-1 + x) + 6 = -200

Multiply (-1 + x) * (-1 + x)
-3(-1(-1 + x) + x(-1 + x)) + 6 = -200
-3((-1 * -1 + x * -1) + x(-1 + x)) + 6 = -200
-3((1 + -1x) + x(-1 + x)) + 6 = -200
-3(1 + -1x + (-1 * x + x * x)) + 6 = -200
-3(1 + -1x + (-1x + x2)) + 6 = -200

Combine like terms: -1x + -1x = -2x
-3(1 + -2x + x2) + 6 = -200
(1 * -3 + -2x * -3 + x2 * -3) + 6 = -200
(-3 + 6x + -3x2) + 6 = -200

Reorder the terms:
-3 + 6 + 6x + -3x2 = -200

Combine like terms: -3 + 6 = 3
3 + 6x + -3x2 = -200

Solving
3 + 6x + -3x2 = -200

Solving for variable 'x'.

Reorder the terms:
3 + 200 + 6x + -3x2 = -200 + 200

Combine like terms: 3 + 200 = 203
203 + 6x + -3x2 = -200 + 200

Combine like terms: -200 + 200 = 0
203 + 6x + -3x2 = 0

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
-67.66666667 + -2x + x2 = 0

Move the constant term to the right:

Add '67.66666667' to each side of the equation.
-67.66666667 + -2x + 67.66666667 + x2 = 0 + 67.66666667

Reorder the terms:
-67.66666667 + 67.66666667 + -2x + x2 = 0 + 67.66666667

Combine like terms: -67.66666667 + 67.66666667 = 0.00000000
0.00000000 + -2x + x2 = 0 + 67.66666667
-2x + x2 = 0 + 67.66666667

Combine like terms: 0 + 67.66666667 = 67.66666667
-2x + x2 = 67.66666667

The x term is -2x.  Take half its coefficient (-1).
Square it (1) and add it to both sides.

Add '1' to each side of the equation.
-2x + 1 + x2 = 67.66666667 + 1

Reorder the terms:
1 + -2x + x2 = 67.66666667 + 1

Combine like terms: 67.66666667 + 1 = 68.66666667
1 + -2x + x2 = 68.66666667

Factor a perfect square on the left side:
(x + -1)(x + -1) = 68.66666667

Calculate the square root of the right side: 8.286535263

Break this problem into two subproblems by setting 
(x + -1) equal to 8.286535263 and -8.286535263.

Subproblem 1

x + -1 = 8.286535263 Simplifying x + -1 = 8.286535263 Reorder the terms: -1 + x = 8.286535263 Solving -1 + x = 8.286535263 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + x = 8.286535263 + 1 Combine like terms: -1 + 1 = 0 0 + x = 8.286535263 + 1 x = 8.286535263 + 1 Combine like terms: 8.286535263 + 1 = 9.286535263 x = 9.286535263 Simplifying x = 9.286535263

Subproblem 2

x + -1 = -8.286535263 Simplifying x + -1 = -8.286535263 Reorder the terms: -1 + x = -8.286535263 Solving -1 + x = -8.286535263 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + x = -8.286535263 + 1 Combine like terms: -1 + 1 = 0 0 + x = -8.286535263 + 1 x = -8.286535263 + 1 Combine like terms: -8.286535263 + 1 = -7.286535263 x = -7.286535263 Simplifying x = -7.286535263

Solution

The solution to the problem is based on the solutions from the subproblems. x = {9.286535263, -7.286535263}

See similar equations:

| 7-4x=9+8x | | (21x^7)/(14x^3) | | (1-2i)z^2+2z+1=0 | | 9(-3D+4)-7= | | 6x^2-5x=5x^2-7x+24 | | 4x=2-2x | | (5x+10)+(17x+1)+(3x-6)= | | 5a=-3 | | 3(2x-1)=-1(x+3) | | 3x1/8-1/2 | | 2x+3x=4x+7 | | 2(3x+7)=9x-13 | | 21x^7/14x^3 | | 3(d-4)+2-2d+1-d=p | | (4/5n)=9/10 | | 14x^3/21x^7 | | 8[5-(6x-3)]+3x=0 | | 5(-4y-12)+2y=-6 | | x-0.19x=494.91 | | (x+1)2-3(x-4)=5(x+3) | | -8(6q+7)-3q= | | 8.036*n=80.34 | | 8x-14=3x-8 | | 3x=3(3x+6) | | (K/7)=10 | | 5z+3c=21 | | -8(v+3)=-3+-7(3+3v) | | 3x+9=-5x-79 | | 4n+12=2n+28 | | 10=-2t-2 | | -2(2x+7)-7(-8x-6)=-7.6 | | 3x^2+2x+8=2(x^2+8) |

Equations solver categories