If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3(x-1)+8=6x+7-5x(x-3)
We move all terms to the left:
-3(x-1)+8-(6x+7-5x(x-3))=0
We multiply parentheses
-3x-(6x+7-5x(x-3))+3+8=0
We calculate terms in parentheses: -(6x+7-5x(x-3)), so:We add all the numbers together, and all the variables
6x+7-5x(x-3)
determiningTheFunctionDomain 6x-5x(x-3)+7
We multiply parentheses
-5x^2+6x+15x+7
We add all the numbers together, and all the variables
-5x^2+21x+7
Back to the equation:
-(-5x^2+21x+7)
-(-5x^2+21x+7)-3x+11=0
We get rid of parentheses
5x^2-21x-3x-7+11=0
We add all the numbers together, and all the variables
5x^2-24x+4=0
a = 5; b = -24; c = +4;
Δ = b2-4ac
Δ = -242-4·5·4
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{31}}{2*5}=\frac{24-4\sqrt{31}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{31}}{2*5}=\frac{24+4\sqrt{31}}{10} $
| 2v=4v-6 | | 13(x–6)+6=4x–9 | | 2(5x+3)=6x+18 | | (5x+6)+3x=90 | | 84=x+6 | | 2(5x+3)=6x×19 | | x^2-12.5x-3.5=0 | | X+7=2+4(1+x) | | 9x8+2=11x/10 | | y^2+14y-100=0 | | Y=2^2x+32 | | F(x)=2^2x+32 | | b–3=2b+4, | | x3=2x2-x | | 0=4n^2-6n+6 | | (10m+3)-(4m-2)=10m+3-4m-2 | | x(2x-3)(9x+1)=0 | | -2/3f+4=2 | | 8x+4(4+-3)=4(6x+4)-4 | | 5m+18=6m+4 | | n/7-16=3 | | 8r+7=-5+2 | | 13x=310 | | -(5a+3)-3(8a-2)=24-a | | 7r+-r=41 | | 4p^2=112 | | 2+n=17 | | 123456790+9876543221=x+2 | | 1.6=z/9 | | 7=2.5x-(x/6) | | 5^s+25s-420=0 | | 3x+4x-20+6x-60=180 |