-3(x-1+8)x-3=6x+7-5x

Simple and best practice solution for -3(x-1+8)x-3=6x+7-5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(x-1+8)x-3=6x+7-5x equation:



-3(x-1+8)x-3=6x+7-5x
We move all terms to the left:
-3(x-1+8)x-3-(6x+7-5x)=0
We add all the numbers together, and all the variables
-3(x+7)x-(x+7)-3=0
We multiply parentheses
-3x^2-21x-(x+7)-3=0
We get rid of parentheses
-3x^2-21x-x-7-3=0
We add all the numbers together, and all the variables
-3x^2-22x-10=0
a = -3; b = -22; c = -10;
Δ = b2-4ac
Δ = -222-4·(-3)·(-10)
Δ = 364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{364}=\sqrt{4*91}=\sqrt{4}*\sqrt{91}=2\sqrt{91}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{91}}{2*-3}=\frac{22-2\sqrt{91}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{91}}{2*-3}=\frac{22+2\sqrt{91}}{-6} $

See similar equations:

| -20+15p=16+18p | | 7-9b=-11 | | 2(x+1)+1=(x-5)+(x-2) | | 3-9n=93 | | 3x/9=5 | | 2(x+1)+1=(x-5)+(x-2 | | 17c=16c-17 | | 0.5+1.5=0.7x-0.9 | | -13=5(1+4x)–2x | | -4+n/2=-8 | | 4-6x-2=-2(3x11 | | -9x-142=219+10x | | 3/5p=36 | | x/58=87 | | -2(-5a-7)=28 | | 3x-35=+5(-7) | | 2x+10+78=5x+10 | | 25-(4x-9)=200 | | -2(-x-3)+4x-1=13 | | 8(x-10)=4(x-6) | | -5n+7=7-5n | | 10x+16=2x+24 | | -6(x-3)=39+x | | 3=1+r/2 | | 3x+18-9x+3x=16 | | 3(y-9)=7y+4 | | 1/3(5x-0.2)=3(5x-0.2) | | -9+4p=-9 | | 8(n-2=31 | | 16+p=-1 | | -3w+48=6(w-1) | | 4+11x=2+5x+(2+6x) |

Equations solver categories