-3/2u-4+4=6/u-2

Simple and best practice solution for -3/2u-4+4=6/u-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3/2u-4+4=6/u-2 equation:



-3/2u-4+4=6/u-2
We move all terms to the left:
-3/2u-4+4-(6/u-2)=0
Domain of the equation: 2u!=0
u!=0/2
u!=0
u∈R
Domain of the equation: u-2)!=0
u∈R
We add all the numbers together, and all the variables
-3/2u-(6/u-2)=0
We get rid of parentheses
-3/2u-6/u+2=0
We calculate fractions
(-3u)/2u^2+(-12u)/2u^2+2=0
We multiply all the terms by the denominator
(-3u)+(-12u)+2*2u^2=0
Wy multiply elements
4u^2+(-3u)+(-12u)=0
We get rid of parentheses
4u^2-3u-12u=0
We add all the numbers together, and all the variables
4u^2-15u=0
a = 4; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·4·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{225}=15$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*4}=\frac{0}{8} =0 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*4}=\frac{30}{8} =3+3/4 $

See similar equations:

| 8x^2+71x+28=0 | | 6(1+2x)=1 | | x+12=61 | | (2 15+y)−7 30=1 10 | | -21+x=7 | | x=7,x=1 | | 3x+x=2x=2 | | 18=-6+4w | | h-13=21h= | | x-7.3=-6.3 | | 6x-90=90x-18 | | 24x+4+2x=3 | | (x+2)√2=30 | | 7x-9x=-74 | | 2=7/8x-3+9/8x | | 8(x-4)=29.6 | | 10^2=5(5+x) | | 3x+1/3x=10/9 | | -2z-(6z+3)=4-(6-2z-(3-2z)) | | 2x7=12-3x | | 2^x+2=5^x-3 | | 10^2=25x | | 2x+21=x+33 | | x-3.1=7.2 | | -3(4y+2)+y=38 | | 0.75x88=66 | | 6x-15-4x+23=-4 | | X2+4x=13 | | 2x+6-+x=180 | | a÷3+1=11 | | 2x-30=26 | | 20+x=2x-5 |

Equations solver categories