-3/4x+6/5x=27/40

Simple and best practice solution for -3/4x+6/5x=27/40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3/4x+6/5x=27/40 equation:



-3/4x+6/5x=27/40
We move all terms to the left:
-3/4x+6/5x-(27/40)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
-3/4x+6/5x-(+27/40)=0
We get rid of parentheses
-3/4x+6/5x-27/40=0
We calculate fractions
(-2700x^2)/3200x^2+(-2400x)/3200x^2+3840x/3200x^2=0
We multiply all the terms by the denominator
(-2700x^2)+(-2400x)+3840x=0
We add all the numbers together, and all the variables
(-2700x^2)+3840x+(-2400x)=0
We get rid of parentheses
-2700x^2+3840x-2400x=0
We add all the numbers together, and all the variables
-2700x^2+1440x=0
a = -2700; b = 1440; c = 0;
Δ = b2-4ac
Δ = 14402-4·(-2700)·0
Δ = 2073600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2073600}=1440$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1440)-1440}{2*-2700}=\frac{-2880}{-5400} =8/15 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1440)+1440}{2*-2700}=\frac{0}{-5400} =0 $

See similar equations:

| 94=-8p+3(69+8) | | 27+x=42;x= | | –35=–(g+79) | | 10+x=38;x= | | 33+6k=65 | | 2007+4-18=x | | 7p-4-6=-24 | | 2000-10(22)+46=x | | 2000-10(2)+46=x | | -8n+8n=7 | | x-3x=-20x+18 | | (X-1)(x+4)=336 | | 5=n−556 | | 32=16^(x+5) | | 8+x=21;x= | | 9+x=30;x= | | 7(u-76)=77 | | 3x-5x+6x=100 | | y-4.56=8.3 | | x-10=16;x= | | x-2=13;x= | | 8-9+3=x | | x-3=17;x= | | 7=s-46/4 | | x-6=11;x= | | 8=-18+3*8(16-40m) | | x+5=15;x= | | x+4=12;x= | | 1/23=a | | 7=s−464 | | x+3=8;x= | | 1/2(4-2x)=2/3(3x+9) |

Equations solver categories