-3/5u+5/3=-1/3u-6

Simple and best practice solution for -3/5u+5/3=-1/3u-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3/5u+5/3=-1/3u-6 equation:



-3/5u+5/3=-1/3u-6
We move all terms to the left:
-3/5u+5/3-(-1/3u-6)=0
Domain of the equation: 5u!=0
u!=0/5
u!=0
u∈R
Domain of the equation: 3u-6)!=0
u∈R
We get rid of parentheses
-3/5u+1/3u+6+5/3=0
We calculate fractions
(-81u)/135u^2+5u/135u^2+25u/135u^2+6=0
We multiply all the terms by the denominator
(-81u)+5u+25u+6*135u^2=0
We add all the numbers together, and all the variables
30u+(-81u)+6*135u^2=0
Wy multiply elements
810u^2+30u+(-81u)=0
We get rid of parentheses
810u^2+30u-81u=0
We add all the numbers together, and all the variables
810u^2-51u=0
a = 810; b = -51; c = 0;
Δ = b2-4ac
Δ = -512-4·810·0
Δ = 2601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2601}=51$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-51)-51}{2*810}=\frac{0}{1620} =0 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-51)+51}{2*810}=\frac{102}{1620} =17/270 $

See similar equations:

| 20(n)+60=285 | | 3x+40=2x+19 | | 58=18+8d | | (8x+11)+(10x-9)=180 | | 3(y+8=51 | | 52=-a/11+49 | | X²+16x=0 | | 2x-4(x-4)+6=20 | | 10+b/5=6 | | 13x+2=162 | | 4x+6-5x=12x-20 | | 0.05x^2-2.65x+35.1=0 | | N+n+5+n+4=21 | | 5u-3+11=81 | | 1(4/7x-3/5)=1/2(-1/3x-1/2) | | -3n-1=-4 | | 26-2y+0.5y=14 | | 98-9xx= | | 38(13-2.5x)=14(2x-10)+55.9 | | 5/8=m/24 | | 10x-0.5x^2-40=0 | | 3,2x+3=-3,3x+16 | | –4.2g=–21 | | 136=-8(n-9) | | -5(-5w+6)-4w=5(w-3)-1 | | 2x=-36+4x | | (5x-2)(3x4)=0 | | 2x=(4x-12) | | 3(x-4)-1=4(x-5) | | f/0.8=2/8 | | 6-3n=1-4n | | –7.36=–1.84(h+10) |

Equations solver categories