-3/5x-7/10x+1/2=-56

Simple and best practice solution for -3/5x-7/10x+1/2=-56 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3/5x-7/10x+1/2=-56 equation:



-3/5x-7/10x+1/2=-56
We move all terms to the left:
-3/5x-7/10x+1/2-(-56)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
We add all the numbers together, and all the variables
-3/5x-7/10x+56+1/2=0
We calculate fractions
50x^2/200x^2+(-120x)/200x^2+(-140x)/200x^2+56=0
We multiply all the terms by the denominator
50x^2+(-120x)+(-140x)+56*200x^2=0
Wy multiply elements
50x^2+11200x^2+(-120x)+(-140x)=0
We get rid of parentheses
50x^2+11200x^2-120x-140x=0
We add all the numbers together, and all the variables
11250x^2-260x=0
a = 11250; b = -260; c = 0;
Δ = b2-4ac
Δ = -2602-4·11250·0
Δ = 67600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{67600}=260$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-260)-260}{2*11250}=\frac{0}{22500} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-260)+260}{2*11250}=\frac{520}{22500} =26/1125 $

See similar equations:

| 5t^2-8t+9=0 | | 9+5a/2=4 | | 8^2+10x=3 | | 49-x=19 | | 7/2h-6=-7/3h-7/2 | | 14-7(2x-1)=-7 | | -5(x-1)=-6x-2 | | X+6-2x=x+1 | | -3(s-2)+17=21 | | 288=8(-6v+6) | | -5+15x-10=12x | | 1/3b+2=1/4b+8 | | -2(3x-2)=-5x+10 | | 2/3x+4=1/3x+12 | | 4(x-2)/x-3+3/x=-3/x(x-3) | | -2=-7x-2+7x | | -x^2+20x+28=0 | | 11t-4.9t^2=-70 | | w/14=3 | | 10-4(x-4)=6 | | -5(1+4m)=-105 | | -2(1-6m)=34+6m | | 89=x+13(7)89=x+13(7) | | 12-2x/5=37 | | 33x-6-44=-72 | | 7(m-1)=3(m+5) | | x2-13x=0 | | 44=2u+12 | | 6x-(-3-3x)=5(x+3) | | 20-8m=-6(m-1) | | 8x=23.2 | | 2/3(3x-12)=2x-4 |

Equations solver categories