If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3/8k-5-4=-5-6/7k
We move all terms to the left:
-3/8k-5-4-(-5-6/7k)=0
Domain of the equation: 8k!=0
k!=0/8
k!=0
k∈R
Domain of the equation: 7k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-3/8k-(-6/7k-5)-5-4=0
We add all the numbers together, and all the variables
-3/8k-(-6/7k-5)-9=0
We get rid of parentheses
-3/8k+6/7k+5-9=0
We calculate fractions
(-21k)/56k^2+48k/56k^2+5-9=0
We add all the numbers together, and all the variables
(-21k)/56k^2+48k/56k^2-4=0
We multiply all the terms by the denominator
(-21k)+48k-4*56k^2=0
We add all the numbers together, and all the variables
48k+(-21k)-4*56k^2=0
Wy multiply elements
-224k^2+48k+(-21k)=0
We get rid of parentheses
-224k^2+48k-21k=0
We add all the numbers together, and all the variables
-224k^2+27k=0
a = -224; b = 27; c = 0;
Δ = b2-4ac
Δ = 272-4·(-224)·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-27}{2*-224}=\frac{-54}{-448} =27/224 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+27}{2*-224}=\frac{0}{-448} =0 $
| 7 | | -77/70k=177/70 | | -112/70k+40/70=210/70-35/70k | | 112/70k+40/70=210/70-35/70k | | 9w*4=17 | | 50=20-y | | 3/2x+1/5=1/x | | -8/5k+4/7=3-1/2k | | 36=b+38 | | 3/5x+1/4=3/4 | | 2-9x=7x–14 | | Y=85+x | | 21/6xx=1 | | 50x=40(x+5) | | 40-3y=√24 | | 5-5a+6=5 | | -3y-8(4y-1)=15+y | | x+8=-x+8 | | -5x+1(x-8)=32 | | 1(x-8)+3=5(x+7) | | 381=11(s-45)+95 | | x*0,15=10000 | | 49x^2-12.25=0 | | 9^(9^x)x=9 | | 16^y=4 | | -6(2x+8)=-12+17 | | 9a=4a+3 | | x*0,2=10000 | | (3x+20)°+(2x)°=180° | | 2x-1/6=3. | | 24-y=18;y=6 | | X=y+2y+3y+4y |