-3/8m+1-3/18m=5

Simple and best practice solution for -3/8m+1-3/18m=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3/8m+1-3/18m=5 equation:



-3/8m+1-3/18m=5
We move all terms to the left:
-3/8m+1-3/18m-(5)=0
Domain of the equation: 8m!=0
m!=0/8
m!=0
m∈R
Domain of the equation: 18m!=0
m!=0/18
m!=0
m∈R
We add all the numbers together, and all the variables
-3/8m-3/18m-4=0
We calculate fractions
(-54m)/144m^2+(-24m)/144m^2-4=0
We multiply all the terms by the denominator
(-54m)+(-24m)-4*144m^2=0
Wy multiply elements
-576m^2+(-54m)+(-24m)=0
We get rid of parentheses
-576m^2-54m-24m=0
We add all the numbers together, and all the variables
-576m^2-78m=0
a = -576; b = -78; c = 0;
Δ = b2-4ac
Δ = -782-4·(-576)·0
Δ = 6084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{6084}=78$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-78)-78}{2*-576}=\frac{0}{-1152} =0 $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-78)+78}{2*-576}=\frac{156}{-1152} =-13/96 $

See similar equations:

| -x^2+9x=4x-12 | | 2(6x)=48 | | 2x^2+24x-280=0 | | 8y+8=-4(y-5) | | 3x+80=150 | | 2x^2+32x+128=64x | | 32-4y=2y+8 | | 7*(2x-3)=5*(x+3) | | 6y+32=-4y-8 | | 2(x^2+16x-140)=0 | | -1+4x=-3+14 | | 6y-42=7y-62 | | 5÷3x+1=12 | | 2x-10=4*(x-3) | | 11/(8+9/3)=t | | 13*4-65/13=t | | 10(2x-1)=8(2x+1)+4x-18 | | 4(8-y)=2y+8 | | 9+4*6-65/13=t | | 3x-7=23+3x | | 32x^2-78x+27=0 | | 7x-9(1/9x-1/9)=1 | | W=3.5h+111.22 | | 32x^2-78x=2 | | 11x-6=10x+3 | | 7•x+1=7 | | 4/3a+4=2/3a-9 | | 6x-95=+65 | | 2/3(3x-21)=6 | | -29+2x=43-x | | 72=0.9v | | 3(x-2)+12+42=180 |

Equations solver categories