-3/8x+1/2=1/4x-2

Simple and best practice solution for -3/8x+1/2=1/4x-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3/8x+1/2=1/4x-2 equation:



-3/8x+1/2=1/4x-2
We move all terms to the left:
-3/8x+1/2-(1/4x-2)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 4x-2)!=0
x∈R
We get rid of parentheses
-3/8x-1/4x+2+1/2=0
We calculate fractions
128x^2/128x^2+(-48x)/128x^2+(-32x)/128x^2+2=0
Fractions to decimals
(-48x)/128x^2+(-32x)/128x^2+2+1=0
We multiply all the terms by the denominator
(-48x)+(-32x)+2*128x^2+1*128x^2=0
Wy multiply elements
256x^2+128x^2+(-48x)+(-32x)=0
We get rid of parentheses
256x^2+128x^2-48x-32x=0
We add all the numbers together, and all the variables
384x^2-80x=0
a = 384; b = -80; c = 0;
Δ = b2-4ac
Δ = -802-4·384·0
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{6400}=80$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-80}{2*384}=\frac{0}{768} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+80}{2*384}=\frac{160}{768} =5/24 $

See similar equations:

| -2(z+-29)=-2 | | 2x^2+3×=27 | | 1-6j=13-7j | | –6b=–5b+7 | | x)=2x+5 | | -2(4x+3x)=2(4+x) | | -2g+7-10g=-10g-7 | | 5(2x-6)=4(3x-2) | | 20-8x-18=x+2 | | 11+7s=-4s-19-14 | | N(-29)=35-x | | -7x+3-x-5=19 | | n(2)=18 | | 3(4x-9)+5x=22 | | 3−m9=11 | | -5(6-g)=55 | | 7x-2=3x+23 | | 11+8w=7w | | g/4=4,2 | | 8x-28-2x= | | 15x-15-19=8x+8 | | a-1/8=a+9/4 | | b-6b=-5 | | 5=a7−6 | | -20+5t-9=19-7t | | p(-4)=48 | | -3x+7x=-10 | | 5k+3k=6 | | 400x=400 | | n/5=12/5 | | 9+x+1=2x-3 | | 3x-42=9(x-4) |

Equations solver categories