If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3/8x-7/40+1/5x=-56
We move all terms to the left:
-3/8x-7/40+1/5x-(-56)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 5x!=0We add all the numbers together, and all the variables
x!=0/5
x!=0
x∈R
-3/8x+1/5x+56-7/40=0
We calculate fractions
(-1400x^2)/6400x^2+(-2400x)/6400x^2+1280x/6400x^2+56=0
We multiply all the terms by the denominator
(-1400x^2)+(-2400x)+1280x+56*6400x^2=0
We add all the numbers together, and all the variables
(-1400x^2)+1280x+(-2400x)+56*6400x^2=0
Wy multiply elements
(-1400x^2)+358400x^2+1280x+(-2400x)=0
We get rid of parentheses
-1400x^2+358400x^2+1280x-2400x=0
We add all the numbers together, and all the variables
357000x^2-1120x=0
a = 357000; b = -1120; c = 0;
Δ = b2-4ac
Δ = -11202-4·357000·0
Δ = 1254400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1254400}=1120$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1120)-1120}{2*357000}=\frac{0}{714000} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1120)+1120}{2*357000}=\frac{2240}{714000} =4/1275 $
| 31+0.07x=37.90+0.04x | | 10=(10)6n | | -7w-36=-9(w+2) | | -3/8x-7/40+1/5=-56 | | 3x+1=2x+50 | | 8-2x-3-6x=-11 | | 5x+2(x-9)=3(x-4)+x | | 6(-6x-10)=-492 | | w÷3=7 | | 6x+13x=20 | | 14x-23=14x-34 | | 10−(3x−1)/2=(6x+3)/11 | | 44x-1-2=2 | | (-27.5)=(-5)x | | 2/9x+1/5=38 | | (4x-14)=(5x+6)=(x-2) | | 0.657*x=175 | | -7-6x=3x-88 | | w+11=19. | | 3=-7w+4(w-3) | | 3x-2=4×+3 | | -1+6-4x=11 | | 2(12x-8)+2(104)=180 | | 7+4q=–4q−9 | | -6(-3x+6)=144 | | 2(2b+2)=6(2+2b) | | 4x-20=-2-3(7-x) | | G=10x | | 11y+4=90 | | (4x-14)=(5x+6) | | 9=k/5 | | 4x-20=-2-3(7-x |