-3k+4(6k+2)=-4(8+6k)5k

Simple and best practice solution for -3k+4(6k+2)=-4(8+6k)5k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3k+4(6k+2)=-4(8+6k)5k equation:



-3k+4(6k+2)=-4(8+6k)5k
We move all terms to the left:
-3k+4(6k+2)-(-4(8+6k)5k)=0
We add all the numbers together, and all the variables
-3k+4(6k+2)-(-4(6k+8)5k)=0
We multiply parentheses
-3k+24k-(-4(6k+8)5k)+8=0
We calculate terms in parentheses: -(-4(6k+8)5k), so:
-4(6k+8)5k
We multiply parentheses
-120k^2-160k
Back to the equation:
-(-120k^2-160k)
We add all the numbers together, and all the variables
-(-120k^2-160k)+21k+8=0
We get rid of parentheses
120k^2+160k+21k+8=0
We add all the numbers together, and all the variables
120k^2+181k+8=0
a = 120; b = 181; c = +8;
Δ = b2-4ac
Δ = 1812-4·120·8
Δ = 28921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(181)-\sqrt{28921}}{2*120}=\frac{-181-\sqrt{28921}}{240} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(181)+\sqrt{28921}}{2*120}=\frac{-181+\sqrt{28921}}{240} $

See similar equations:

| 45=15(h) | | 3t^2+24t+45=0 | | 5=m(3)-7 | | 12x^2+21x+9=0 | | 1+8(x-9)=3-2(x-7) | | 8x+12+8x+12=78 | | 13+w7=-18 | | 2x2-11x+14=0 | | 6(h/4)=-2h | | 1+8(x-8)=3-2(x-7) | | 6(4-n)-3(1-5n)=-4n-8n | | -5x^2+132x=0 | | 110-6b=83-4b | | 3(2-3f)=42 | | 3x-8=12+5x | | 9(u-6)=5u-14 | | 4(b-2)-3b=-10+4 | | 19-3x4/(-6)=21 | | .7x2+21x-28=0 | | 7x-6x+12=13-6 | | 8(y+7)=6y-8y+2y | | 7x-6x+112=13-6 | | 21y^2-2y-3=0 | | x/2-17=29 | | 10=3x-3-2x | | 4x+14/3=2 | | 256=109-w | | (3/8)+(b/3)=5/12 | | (F)x=2x3+11x2+17x+6 | | 6.6+v/8=-6.2 | | 6/12=x/54 | | 21x-12=180 |

Equations solver categories