If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3q^2-80q-160=0
a = -3; b = -80; c = -160;
Δ = b2-4ac
Δ = -802-4·(-3)·(-160)
Δ = 4480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4480}=\sqrt{64*70}=\sqrt{64}*\sqrt{70}=8\sqrt{70}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-8\sqrt{70}}{2*-3}=\frac{80-8\sqrt{70}}{-6} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+8\sqrt{70}}{2*-3}=\frac{80+8\sqrt{70}}{-6} $
| (6-x)^(x^2+7x+12)=1 | | 3(0.1x+2)=14.8−0.8x | | 1/4=1.5/x | | 3×+2y=600 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 | | 70=-8x+39 |