-3x(-4-2x)=-2(x-1)

Simple and best practice solution for -3x(-4-2x)=-2(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3x(-4-2x)=-2(x-1) equation:



-3x(-4-2x)=-2(x-1)
We move all terms to the left:
-3x(-4-2x)-(-2(x-1))=0
We add all the numbers together, and all the variables
-3x(-2x-4)-(-2(x-1))=0
We multiply parentheses
6x^2+12x-(-2(x-1))=0
We calculate terms in parentheses: -(-2(x-1)), so:
-2(x-1)
We multiply parentheses
-2x+2
Back to the equation:
-(-2x+2)
We get rid of parentheses
6x^2+12x+2x-2=0
We add all the numbers together, and all the variables
6x^2+14x-2=0
a = 6; b = 14; c = -2;
Δ = b2-4ac
Δ = 142-4·6·(-2)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{61}}{2*6}=\frac{-14-2\sqrt{61}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{61}}{2*6}=\frac{-14+2\sqrt{61}}{12} $

See similar equations:

| 9x+10-7x=5(x+3) | | (x+5)/6=2 | | 9m=67 | | q+-72=-27 | | 14x+5+21x=180 | | 2x1=x+13 | | -3x(-4-2x)=-2+x-1) | | 8÷x+8=5÷8 | | 64=-3(8+6r)-(r+7) | | 7r+2=3r-26 | | -6c+-4c=-6 | | 3x+15=5x-21 | | |0.5x+3|=x^2-4 | | 3x+2+5x-14=90 | | |0.5x+3|=x^2=4 | | 5(2x-7)=6(x+3) | | -8x-36=3x-7(4x-7) | | 1+4x=2+3.75x | | 2x-12=2x+5 | | 4y+53=57 | | 4(-3y+10)=100 | | x3+7=12x= | | 68=8h | | 5x7x15=19 | | 3-x=22-7x | | 3x+8x-19=58 | | 8-6x+15=2x21 | | v/5+8=11 | | 18−5w+7w−4=28 | | 3+(1/4)a=3 | | 59=n+31 | | 3d+6=6d |

Equations solver categories