-3x(2x+10)=2(-4x+5)

Simple and best practice solution for -3x(2x+10)=2(-4x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3x(2x+10)=2(-4x+5) equation:



-3x(2x+10)=2(-4x+5)
We move all terms to the left:
-3x(2x+10)-(2(-4x+5))=0
We multiply parentheses
-6x^2-30x-(2(-4x+5))=0
We calculate terms in parentheses: -(2(-4x+5)), so:
2(-4x+5)
We multiply parentheses
-8x+10
Back to the equation:
-(-8x+10)
We get rid of parentheses
-6x^2-30x+8x-10=0
We add all the numbers together, and all the variables
-6x^2-22x-10=0
a = -6; b = -22; c = -10;
Δ = b2-4ac
Δ = -222-4·(-6)·(-10)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{61}}{2*-6}=\frac{22-2\sqrt{61}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{61}}{2*-6}=\frac{22+2\sqrt{61}}{-12} $

See similar equations:

| w-1=5w=3w-8 | | 196=4+8(-4p+4) | | -4(x+2)=-73 | | 10+10b=8b+4 | | 5=x√2 | | 2(5x+9)=  4848 | | 1/3+3=8-1/6y | | -9(y+2)=6y-33 | | 12x-10=2x-5 | | 4c+4=24 | | 5x-3=3(2x+5 | | 9(n-7)+2n=-149 | | 2v+15=-7(v-6) | | 14x+20=7x+55 | | 4-11s=15 | | 5m-5=65 | | 4(x+5)=4(3+2x)−4x | | 4=-5x-3/8 | | -87=-3(8+3b) | | 4(z+3)=(1/3)(12z+36) | | 5k-10-8k=34 | | 2(v+6)-7v=-33 | | 555=66+9.888+5x | | 1.1x+1.2=-10 | | 1+2(x+1)=4x+9-2x | | -3.6÷(-60)=x | | -21=6r-7+r | | 2(z+1)+3z=37 | | 13-x*4=-88 | | 220=-4x+260 | | -12x-108=108 | | 46e+7−44e=21. |

Equations solver categories