-3x(5-2x)=6-(4x-9)

Simple and best practice solution for -3x(5-2x)=6-(4x-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3x(5-2x)=6-(4x-9) equation:



-3x(5-2x)=6-(4x-9)
We move all terms to the left:
-3x(5-2x)-(6-(4x-9))=0
We add all the numbers together, and all the variables
-3x(-2x+5)-(6-(4x-9))=0
We multiply parentheses
6x^2-15x-(6-(4x-9))=0
We calculate terms in parentheses: -(6-(4x-9)), so:
6-(4x-9)
determiningTheFunctionDomain -(4x-9)+6
We get rid of parentheses
-4x+9+6
We add all the numbers together, and all the variables
-4x+15
Back to the equation:
-(-4x+15)
We get rid of parentheses
6x^2-15x+4x-15=0
We add all the numbers together, and all the variables
6x^2-11x-15=0
a = 6; b = -11; c = -15;
Δ = b2-4ac
Δ = -112-4·6·(-15)
Δ = 481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{481}}{2*6}=\frac{11-\sqrt{481}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{481}}{2*6}=\frac{11+\sqrt{481}}{12} $

See similar equations:

| 1/4(2(x-1)+8)=x | | 3x+17=12–x | | -2x+6x-7x+2=46 | | 2/5x+14=56 | | -23x+-17=(-23+-17)x= | | 3x2=1x-6 | | -5(1-5)+5(-8+-2=-4x-8x | | 2(3x-3)-1=5x-5 | | 12-13=30x+6 | | j/7=-8 | | −12x=−36 | | -4b+5(b-2)=-10+b | | x−3+11=8 | | 3x+1+5x=+15+7x | | 12.39=2g+3.77 | | -23x+-17=(-23+-17)= | | 2/3(c+2)=c+5 | | 2x+10=4x+28 | | -v+271=114 | | 23+19+x=180 | | 3(x+1)=3×+3 | | 5+6x-7=9 | | 3(18t+10)-3=9(7t+15) | | 120+.60x=80+.80x | | 3(k-6=4(k+2)-21 | | -x+28=3(5x-5)-5 | | 2.5x+0.8=4.6-1.3x | | 8+6(x-1)=-4 | | -3x+22=-12 | | y/5+4=-10 | | 6(n+5)-9=5n-7 | | 4/3u-9=-17 |

Equations solver categories