-3x(x+2)=-8(-3x-8)

Simple and best practice solution for -3x(x+2)=-8(-3x-8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3x(x+2)=-8(-3x-8) equation:


Simplifying
-3x(x + 2) = -8(-3x + -8)

Reorder the terms:
-3x(2 + x) = -8(-3x + -8)
(2 * -3x + x * -3x) = -8(-3x + -8)
(-6x + -3x2) = -8(-3x + -8)

Reorder the terms:
-6x + -3x2 = -8(-8 + -3x)
-6x + -3x2 = (-8 * -8 + -3x * -8)
-6x + -3x2 = (64 + 24x)

Solving
-6x + -3x2 = 64 + 24x

Solving for variable 'x'.

Reorder the terms:
-64 + -6x + -24x + -3x2 = 64 + 24x + -64 + -24x

Combine like terms: -6x + -24x = -30x
-64 + -30x + -3x2 = 64 + 24x + -64 + -24x

Reorder the terms:
-64 + -30x + -3x2 = 64 + -64 + 24x + -24x

Combine like terms: 64 + -64 = 0
-64 + -30x + -3x2 = 0 + 24x + -24x
-64 + -30x + -3x2 = 24x + -24x

Combine like terms: 24x + -24x = 0
-64 + -30x + -3x2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(64 + 30x + 3x2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(64 + 30x + 3x2)' equal to zero and attempt to solve: Simplifying 64 + 30x + 3x2 = 0 Solving 64 + 30x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 21.33333333 + 10x + x2 = 0 Move the constant term to the right: Add '-21.33333333' to each side of the equation. 21.33333333 + 10x + -21.33333333 + x2 = 0 + -21.33333333 Reorder the terms: 21.33333333 + -21.33333333 + 10x + x2 = 0 + -21.33333333 Combine like terms: 21.33333333 + -21.33333333 = 0.00000000 0.00000000 + 10x + x2 = 0 + -21.33333333 10x + x2 = 0 + -21.33333333 Combine like terms: 0 + -21.33333333 = -21.33333333 10x + x2 = -21.33333333 The x term is 10x. Take half its coefficient (5). Square it (25) and add it to both sides. Add '25' to each side of the equation. 10x + 25 + x2 = -21.33333333 + 25 Reorder the terms: 25 + 10x + x2 = -21.33333333 + 25 Combine like terms: -21.33333333 + 25 = 3.66666667 25 + 10x + x2 = 3.66666667 Factor a perfect square on the left side: (x + 5)(x + 5) = 3.66666667 Calculate the square root of the right side: 1.914854216 Break this problem into two subproblems by setting (x + 5) equal to 1.914854216 and -1.914854216.

Subproblem 1

x + 5 = 1.914854216 Simplifying x + 5 = 1.914854216 Reorder the terms: 5 + x = 1.914854216 Solving 5 + x = 1.914854216 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + x = 1.914854216 + -5 Combine like terms: 5 + -5 = 0 0 + x = 1.914854216 + -5 x = 1.914854216 + -5 Combine like terms: 1.914854216 + -5 = -3.085145784 x = -3.085145784 Simplifying x = -3.085145784

Subproblem 2

x + 5 = -1.914854216 Simplifying x + 5 = -1.914854216 Reorder the terms: 5 + x = -1.914854216 Solving 5 + x = -1.914854216 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + x = -1.914854216 + -5 Combine like terms: 5 + -5 = 0 0 + x = -1.914854216 + -5 x = -1.914854216 + -5 Combine like terms: -1.914854216 + -5 = -6.914854216 x = -6.914854216 Simplifying x = -6.914854216

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-3.085145784, -6.914854216}

Solution

x = {-3.085145784, -6.914854216}

See similar equations:

| x(x+4)=-6 | | 16-6k=k+72 | | xsquared-27x+176=0 | | (x-4)(6-x)=(x-3)(8-x) | | m^2-m-14=0 | | 3m+6=3(m+2) | | 6-12=x+4 | | 5=-7.35 | | 4x-12=-x-15 | | 3x+2x=5x-12 | | 5x+5-7x=15-12x+10-10 | | 94-76x=42 | | 5m-5=3m+2m-9 | | 7y-12y=-15-20 | | -5(-2x-5)=-5(-x+4) | | m+18+2=m | | -2x+7=-5-6x | | m^2=0 | | 5x+35=40x | | x^2-8x-384=0 | | 1(x+4)= | | 2(5c-1)-2=6c+8 | | m+2=7+2m | | 2x+5y=xy | | 5x+134=10x-6 | | -20+5=-15 | | 2x^2-3xy-2y^2+5x=0 | | 2x-11+105=180 | | 8m-20=3(3m-7) | | 0=4x^3+7x^2-208x-144 | | -7x-4y=11 | | x/-5=-1-(-6) |

Equations solver categories