-3x(x+4)=2(4x-6)

Simple and best practice solution for -3x(x+4)=2(4x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3x(x+4)=2(4x-6) equation:


Simplifying
-3x(x + 4) = 2(4x + -6)

Reorder the terms:
-3x(4 + x) = 2(4x + -6)
(4 * -3x + x * -3x) = 2(4x + -6)
(-12x + -3x2) = 2(4x + -6)

Reorder the terms:
-12x + -3x2 = 2(-6 + 4x)
-12x + -3x2 = (-6 * 2 + 4x * 2)
-12x + -3x2 = (-12 + 8x)

Solving
-12x + -3x2 = -12 + 8x

Solving for variable 'x'.

Reorder the terms:
12 + -12x + -8x + -3x2 = -12 + 8x + 12 + -8x

Combine like terms: -12x + -8x = -20x
12 + -20x + -3x2 = -12 + 8x + 12 + -8x

Reorder the terms:
12 + -20x + -3x2 = -12 + 12 + 8x + -8x

Combine like terms: -12 + 12 = 0
12 + -20x + -3x2 = 0 + 8x + -8x
12 + -20x + -3x2 = 8x + -8x

Combine like terms: 8x + -8x = 0
12 + -20x + -3x2 = 0

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
-4 + 6.666666667x + x2 = 0

Move the constant term to the right:

Add '4' to each side of the equation.
-4 + 6.666666667x + 4 + x2 = 0 + 4

Reorder the terms:
-4 + 4 + 6.666666667x + x2 = 0 + 4

Combine like terms: -4 + 4 = 0
0 + 6.666666667x + x2 = 0 + 4
6.666666667x + x2 = 0 + 4

Combine like terms: 0 + 4 = 4
6.666666667x + x2 = 4

The x term is 6.666666667x.  Take half its coefficient (3.333333334).
Square it (11.11111112) and add it to both sides.

Add '11.11111112' to each side of the equation.
6.666666667x + 11.11111112 + x2 = 4 + 11.11111112

Reorder the terms:
11.11111112 + 6.666666667x + x2 = 4 + 11.11111112

Combine like terms: 4 + 11.11111112 = 15.11111112
11.11111112 + 6.666666667x + x2 = 15.11111112

Factor a perfect square on the left side:
(x + 3.333333334)(x + 3.333333334) = 15.11111112

Calculate the square root of the right side: 3.887301264

Break this problem into two subproblems by setting 
(x + 3.333333334) equal to 3.887301264 and -3.887301264.

Subproblem 1

x + 3.333333334 = 3.887301264 Simplifying x + 3.333333334 = 3.887301264 Reorder the terms: 3.333333334 + x = 3.887301264 Solving 3.333333334 + x = 3.887301264 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.333333334' to each side of the equation. 3.333333334 + -3.333333334 + x = 3.887301264 + -3.333333334 Combine like terms: 3.333333334 + -3.333333334 = 0.000000000 0.000000000 + x = 3.887301264 + -3.333333334 x = 3.887301264 + -3.333333334 Combine like terms: 3.887301264 + -3.333333334 = 0.55396793 x = 0.55396793 Simplifying x = 0.55396793

Subproblem 2

x + 3.333333334 = -3.887301264 Simplifying x + 3.333333334 = -3.887301264 Reorder the terms: 3.333333334 + x = -3.887301264 Solving 3.333333334 + x = -3.887301264 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.333333334' to each side of the equation. 3.333333334 + -3.333333334 + x = -3.887301264 + -3.333333334 Combine like terms: 3.333333334 + -3.333333334 = 0.000000000 0.000000000 + x = -3.887301264 + -3.333333334 x = -3.887301264 + -3.333333334 Combine like terms: -3.887301264 + -3.333333334 = -7.220634598 x = -7.220634598 Simplifying x = -7.220634598

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.55396793, -7.220634598}

See similar equations:

| (4-3k)7= | | 4(2x-7)-3(5x+3)=14 | | 2(4x+3)=7-(x-11) | | |x+2|=5 | | 6a^2-18a-108=0 | | |x+2|-4=7 | | X/4+3=x/5-8 | | -23-(3y+1)=3(y+1)+3y | | 7+26=x | | 26x=7 | | 3|2x+1|+5=14 | | x^2+2x=x^2+24 | | m-4=3 | | ln(5x)+ln(2x+1)=3 | | 12x^2+25+30x=0 | | 3st^2-9s^3t+6s^2t^2=0 | | (6+i)/i | | t^2+15t-16=0 | | (20-4)m+8c=1-(m+2c) | | 1-(m+2c)=(20-4)m+8c | | -(58m-76n-43)= | | -(5x-2)= | | 10-5c= | | 4n^2+12n-9=0 | | 18(1/3x-9)=-100x-7-1/3(1-2x) | | x^2-10+26=8 | | 4x-7=180 | | 2(x+8)-6=22 | | 10x^2-15x^5=0 | | 3t-1/2+7/8 | | y=8E-08x | | -2j+6=1j-3 |

Equations solver categories