-3x(x+8)+6(x+1)=8+10x+2

Simple and best practice solution for -3x(x+8)+6(x+1)=8+10x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3x(x+8)+6(x+1)=8+10x+2 equation:



-3x(x+8)+6(x+1)=8+10x+2
We move all terms to the left:
-3x(x+8)+6(x+1)-(8+10x+2)=0
We add all the numbers together, and all the variables
-3x(x+8)+6(x+1)-(10x+10)=0
We multiply parentheses
-3x^2-24x+6x-(10x+10)+6=0
We get rid of parentheses
-3x^2-24x+6x-10x-10+6=0
We add all the numbers together, and all the variables
-3x^2-28x-4=0
a = -3; b = -28; c = -4;
Δ = b2-4ac
Δ = -282-4·(-3)·(-4)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-4\sqrt{46}}{2*-3}=\frac{28-4\sqrt{46}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+4\sqrt{46}}{2*-3}=\frac{28+4\sqrt{46}}{-6} $

See similar equations:

| 36x^2-60x=-25 | | 0=4x-4000x^-2 | | 37x^2+73x-2=0 | | n^2-3n-405=0 | | 6x+2=85 | | 9+d=16(+1) | | x+8=x+2x-22 | | 3(x-7)=3(x-8) | | 30-3x=40-7x | | 7(-n-3)=-10(n+3) | | 6x-40=25 | | 8(-11a+1)=-7(1+12a)+11a | | 4t=3t-9 | | 2.5x=3.7 | | 3^(x-1)=12 | | x/3=27*3 | | 0=4x^2+x+3 | | 1.8y-10.2=-1.9+0.9 | | 2x+60=x+40 | | x^2-5x+3=2x+13 | | 4x2+-11x+-3=0 | | 5f-8=12(+8) | | -3(7k+8)-12=5+10(k-1) | | 6.95+5.25x=40 | | 3x^2-7=-2x+1 | | w+10=10-3w | | 66=9y+3 | | 2(8x-10)+7(x+5)=-59 | | n+3+10n=7(1+3n)+2(-5n-4) | | -4.1=7.1+u/7 | | -7x+6(-3x+8)=-77 | | 7(w-5)-7=-6(-3w+4)-3w |

Equations solver categories