If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x+(1/2)(-6x+11)=-3.5
We move all terms to the left:
-3x+(1/2)(-6x+11)-(-3.5)=0
Domain of the equation: 2)(-6x+11)!=0We add all the numbers together, and all the variables
x∈R
-3x+(+1/2)(-6x+11)-(-3.5)=0
We add all the numbers together, and all the variables
-3x+(+1/2)(-6x+11)+3.5=0
We multiply parentheses ..
(-6x^2+1/2*11)-3x+3.5=0
We multiply all the terms by the denominator
(-6x^2+1-3x*2*11)+(3.5)*2*11)=0
We add all the numbers together, and all the variables
(-6x^2+1-3x*2*11)=0
We get rid of parentheses
-6x^2-3x*2*11+1=0
Wy multiply elements
-6x^2-66x*1+1=0
Wy multiply elements
-6x^2-66x+1=0
a = -6; b = -66; c = +1;
Δ = b2-4ac
Δ = -662-4·(-6)·1
Δ = 4380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4380}=\sqrt{4*1095}=\sqrt{4}*\sqrt{1095}=2\sqrt{1095}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-66)-2\sqrt{1095}}{2*-6}=\frac{66-2\sqrt{1095}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-66)+2\sqrt{1095}}{2*-6}=\frac{66+2\sqrt{1095}}{-12} $
| X-5+x+15+2x+10=180 | | 3-x=97 | | q+10/2=4 | | 2.31(t+17)=0 | | 9x-45=2x+34 | | 2/3-m=0 | | ((1/2)*(y-(1/6))+(2/3)=(5/6)+(1/3)*(1/2-3y) | | 7z+4-9z=18 | | 7w=64 | | 63+X+2x+183-X=360 | | 63+X+2x+138-X=360 | | 11x-49=x+41 | | 4=q/3−3 | | -5=u/4-8 | | d-448=13 | | r-166=-80 | | -8u=-304 | | 3.5=x/12 | | 90+90+4x+10-20+X=360 | | (d)=-d2+3d+4 | | 2x-5-18x=(-1/2)(22x+10) | | B(t)=96 | | 30x+0.15x=36x+0.10x | | g3+ 9=13 | | 5=-9+3x | | g+68=89 | | -3x+5=x10 | | x+104=121 | | 2.7+2b=3.4-1.5b | | 2x2-30-2=0 | | 85/a-5+8+90=10 | | 9-t=20 |