-3x2+2x-16=2x2+2x-52

Simple and best practice solution for -3x2+2x-16=2x2+2x-52 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3x2+2x-16=2x2+2x-52 equation:



-3x^2+2x-16=2x^2+2x-52
We move all terms to the left:
-3x^2+2x-16-(2x^2+2x-52)=0
We get rid of parentheses
-3x^2-2x^2+2x-2x+52-16=0
We add all the numbers together, and all the variables
-5x^2+36=0
a = -5; b = 0; c = +36;
Δ = b2-4ac
Δ = 02-4·(-5)·36
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*-5}=\frac{0-12\sqrt{5}}{-10} =-\frac{12\sqrt{5}}{-10} =-\frac{6\sqrt{5}}{-5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*-5}=\frac{0+12\sqrt{5}}{-10} =\frac{12\sqrt{5}}{-10} =\frac{6\sqrt{5}}{-5} $

See similar equations:

| 8z^2+15z-27=0 | | 6/15d+9/30d−1/6d=d+1.5−2/12d | | (8x+1)(7x+4)=0 | | 2(n)=105+n | | 5/7=c1/4 | | -2(3-3)+4=5x+3 | | 8(x-1)(x-6)=0 | | 0.07x=45 | | 5.4z=35.1* | | x+12.2=34.7* | | 1=a+5 | | 6(x+5)+2=8(2x-5+22 | | 47° + x° + 33° = 180° x° = ° | | z-3z=9 | | y’-y=13 | | s-3.8=2.15 | | s-3.9=056 | | 7=(u+7) | | 1200(1.045)^t=3000 | | 4(x+8)=76 | | 3(x-2)=7(x-1)+3 | | n–8=–12 | | p=100(1.8^50) | | x+2.8=13 | | -4(5x-7)=-12 | | 3x+15-6x=-18+6x | | z3+7=11 | | 30x+5=120 | | a+5.5=9.14 | | -2x+3=-x=12 | | 7-2e−1−3=6+6e | | 0.7x+0.25=-0.5x-1 |

Equations solver categories